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Abstract 

Interpolation of precipitation data is a common practice for generating continuous, spatially-distributed fields that can be used for 

a range of applications, including climate modeling, water resource management, and agricultural planning. To obtain the refer-

ence field, daily observation data from the measurement network of the Institute of Meteorology and Water Management – Na-

tional Research Institute was used. In this study, we compared and combined six different interpolation methods for daily precipi-

tation in Poland, including bilinear and bicubic interpolation, inverse distance weighting, distance-weighted average, nearest neigh-

bor remapping, and thin plate spline regression. Implementations of these methods available in the R programming language (e.g., 

from packages akima, gstat, fields) and the Climate Data Operators (CDO) were applied. The performance of each method was 

evaluated using multiple metrics, including the Pearson correlation coefficient (RO) and the correspondence ratio (CR), but there 

was no clear optimal method. As an interpolated resulting field, a field consisting of the best interpolations for individual days was 

proposed. The assessment of daily fields was based on the CR and RO parameters. Our results showed that the combined ap-

proach outperformed individual methods with higher accuracy and reliability and allowed for generating more accurate and relia-

ble precipitation fields. On a group of selected stations (data quality and no missing data), the precipitation result fields were com-

pared with the fields obtained in other projects-CPLFD-GDPT5 (Berezowski et al. 2016) and G2DC-PLC (Piniewski et al. 2021). 

The variance inflation factor (VIF) was bigger for the resulting fields (~5), while for the compared fields, it was below 3. How-

ever, for the mean absolute error (MAE), the relationship was reversed – the MAE was approximately half as low for the fields 

obtained in this work. 
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1. Introduction 

Climate change is undeniably confirmed in observational data, regardless of the perspective from which 

the data is analyzed (FAOSTAT 2022; NOAA 2022). Recognition of the necessity for adaptation and miti-

gation strategies is evident among governments and societies, a fact substantiated by the initiatives under-

taken by the United Nations Framework Convention on Climate Change (UNFCCC). These strategies are 

rooted in climate data, and their effectiveness hinges on the precision of climate change forecasts. Certain 

existing climate scenarios fail to depict climate fluctuations for specific regions without accounting for lo-

calized conditions. 
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Precipitation is a meteorological phenomenon characterized by high spatiotemporal variability; unlike tem-

perature or air pressure, this parameter is discontinuous. This makes interpolation or forecasting of pre-

cipitation challenging. This work attempts to create a reference field for Poland for the process of adjust-

ing climate scenarios. 

Based on The Fifth Assessment Report (IPCC 2014) prepared by the Intergovernmental Panel on Climate 

Change (IPCC), an international program, the Coordinated Regional Downscaling Experiment 

(CORDEX) (Giorgi et al. 2009) was established in the frame of the World Climate Research Program 

(WRCP). The CORDEX aimed to organize and coordinate a framework to produce improved regional 

climate change projections for 14 regional (CORDEX) domains. Among these 14 domains is EUR-11, 

which covers Europe. For this region, climate simulations were prepared and developed by the European 

branch of the international CORDEX initiative (EURO-CORDEX) (Jacob et al. 2014; Benestad et al. 

2021). This project offers hindcast simulations, historical simulations, and climate scenarios (Benestad et 

al. 2017). Hindcast simulations cover 1989-2008, using initial and boundary data from global atmospheric 

reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ERA-Interim reanaly-

sis) (Dee et al. 2011). They are made for model makers to evaluate the model design and improve it. His-

torical simulations cover the period of 1951-2005. Regional Climate Models (RCM) use the initial and lat-

eral boundary conditions from Global Climate Models (GCM), and their purpose is to analyze the correct-

ness of the RCM-GCM scheme for a given region. Due to the higher resolution of the RCM model, it is 

possible to feed the RCM-GCM scheme with a more detailed description of the local environment. For 

example, height above sea level and terrain type are provided more accurately. As a result, this procedure 

should make the simulation results closer to real results. Various physical parametrizations and numerical 

methods are used in RCMs, which means that the quality of past climate reconstructions may change de-

pending on the studied area and model. Comparing historical simulations with the local climate in the 

studied domain allows for appropriate selection and correction of RCM-GCM schemes. An ensemble of 

climate scenarios compatible with the domain conditions is necessary to study future climate changes and, 

in turn, create effective mitigation and adaptation programs. 

Reliable and high-quality observational datasets are essential to create good-quality ensembles of climate 

scenarios. First, the full range of available data, including local observational data, should be used. The re-

sources of many repositories contain gridded datasets, but regional analysis usually does not meet this con-

dition. Within the European Climate Assessment & Dataset project, regular grid data E-OBS (high-resolu-

tion gridded mean/max/min temperature, precipitation, and sea level pressure for Europe and Northern 

Africa) (Cornes et al. 2018) with 0.1- and 0.25-degree spatial resolution and daily temporal resolution are 

available. The current list of stations from which the observational data are used to create E-OBS sets for 

rainfall for the territory of Poland includes 1688 items (including 40 synoptic stations provided by the In-

stitute of Meteorology and Water Management – National Research Institute (IMWM-NRI)). However, 

the period over which individual observation series are available varies significantly. For the analyzed pe-
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riod of 1976-2005, the minimum number of daily records is 89, with a median of 650 (these are signifi-

cantly lower values than for the data used in this work, for which the minimum is 197 and the median 

719). For 1826 days, the number of stations used to create E-OBS reanalysis is less than 197. This corre-

sponds to approximately 17% of the total amount of data in the analyzed period, i.e., approximately five 

years. The use of more input data can help to describe precipitation more accurately. 

Some meteorological services or institutes provide gridded precipitation data, but these have limitations 

when applied to Poland. The National Oceanic and Atmospheric Administration (NOAA) Physical Sci-

ences Laboratory (PSL) website provides collections with gridded precipitation data ranging from 2.5 to 

0.25 degrees. However, the high-resolution collections of gridded precipitation datasets cover only the 

United States of America (USA) area. The Swiss Federal Institute for Forest, Snow and Landscape Re-

search (WSL) provides free access to high resolution (30 arcsecs, ~1 km) climate data – CHELSA (Clima-

tologies at high resolution for the earth’s land surface areas) (Karger et al. 2017). This website has available 

data based on a mechanistic statistical downscaling of global reanalysis data or global circulation model 

output. Unfortunately, the data from the reanalyzes covers the period from 1979, which is already intricate 

and highly processed. 

There are studies where great importance is attached to the maximum use of available observational data, 

especially when extreme events are important in the analysis, as shown in Sheffield et al. (2006). The study 

conducted by Belo-Pereira et al. (2011) regarding rainfall data across the Iberian Peninsula demonstrated 

that accurate descriptions of region-specific meteorological situations require high-resolution datasets de-

rived from a comprehensive measurement network. The global gridded datasets compared in Belo-Pereira 

et al. (2011) overestimated the number of days with precipitation while underestimating heavy precipita-

tion events. 

Two high–resolution daily gridded datasets were created in the climate change impact assessment for se-

lected sectors in Poland (CHASE-PL) project. The work of Berezowski et al. (2016) described the first da-

taset with a resolution of 5 km covering the period of 1951-2013 for temperature and precipitation in the 

two largest Polish river basins. The work was carried out by increasing the resolution to 2 km, extending 

the period from 2013 to 2019, and extending the list of meteorological parameters, including humidity and 

wind speed (Piniewski et al. 2021). Data from the measurement network of the IMWM-NRI were used, as 

well as data from all neighboring countries, including the densest data network from Germany. The as-

sessment of the quality of the prepared gridded datasets, included in the works of Berezowski et al. (2016) 

and Piniewski et al. (2021), also showed that they describe the local meteorological conditions well, but the 

projected Polish Geographic Coordinate System 1992 (PUWG-92) was used. Many studies (e.g., Herrera 

et al. 2018; Crespi et al. 2019) on the interpolation of observational data assess the causes of errors, point-

ing to the role of the density of measuring stations and the properties of interpolation methods. Daly et al. 

(2017) analyzed the uncertainty in gridded precipitation datasets for densely spaced rain gauge networks in 

the Appalachian Mountains in western North Carolina, USA. In this study, it was concluded that station 

density and misallocation are likely sources of errors. The sensitivity assessment of various interpolation 
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methods was included in Crespi et al. (2019), where the 1981-2010 monthly precipitation climatology for 

Norway at 1 km resolution was presented. In this paper, three interpolation algorithms were considered. 

The first algorithm, HCLIM+RK (the global historical climate database + Regression Kriging), was a 

combination of two methods, combining the output from a numerical model with in-situ observations. 

The second algorithm, MLRK (Multi-Linear Local Regression Kriging), resulted from the Multi-Linear 

Local Regression Kriging, and the third LWLR (Local Weighted Linear Regression) was the Local 

Weighted Linear Regression. Among other conclusions from the conducted research, the authors noted 

that the accuracy of MLRK and LWLR was more sensitive to the spatial variability of station distribution 

over the domain. Their interpolated fields were more affected by discontinuities and outliers, especially 

over those areas not covered by the rain-gauge network. A comprehensive analysis of the uncertainty in 

the gridded data was presented by Herrera et al. (2018). Three factors influencing the quality of the inter-

polated fields were analyzed: station density, interpolation methodology, and spatial resolution of the 

fields obtained. In the paper, an experiment was carried out for three interpolation methods and different 

levels of observational data density. This paper evaluated the experiment’s results with a statistical analysis 

of variance (von Storch, Zwiers 1999; Deque et al. 2007; 2012). The authors stated that the station’s den-

sity explained more than 60% of the variance of the interpolation procedures. 

This study aimed to develop reference precipitation gridded datasets covering the territory of Poland. 

These datasets were planned to evaluate the RCM-GCM ensemble using measures presented in works 

such as Gleckler et al. (2008) and Konca-Kędzierska (2019), for the last available 30-year period (1976-

2005) in the historical simulations on the EUR 0.11° grid. 

Several of the works mentioned concerned gridded data for the area of Poland, but they did not corre-

spond to the needs posed in this paper. For example, in Berezowski et al. (2016), Piniewski et al. (2021), 

and Cornes et al. (2018), a grid other than the EUR 0.11° was considered. In Herrera et al. (2018), the pe-

riod did not cover the years 1976 and 1977. The undeniable influence of the quantity and quality of obser-

vation data on the quality of gridded fields has been confirmed in all these works.  

2. Materials and methods 

2.1. Data 

Given our goal of producing a grid precipitation field for the 1976-2005 period (as part of the EURO-

COREX project’s historical scenarios), we opted to rely on the daily precipitation data publicly available 

from IMWM-NRI1. The IMWM-NRI observation network service department is accountable for ensuring 

data accuracy, verifying the suitability of station locations, and selecting measurement equipment in com-

pliance with the Technical Regulations of the World Meteorological Organization (WMO). The measure-

ment network includes three types of stations operating in different time regimes: synoptic, climatic, and 

 
1 https://danepubliczne.imgw.pl 
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rainfall. The amount of data for individual days of the period is variable, which affects the interpolated 

daily fields (Table 1).  

Table 1. The statistics on NDay – the amount of observational data per one day. Min. – minimum of NDay, Mean – 

average value of NDay, Max. – maximum value of NDay, Q25, Q50, Q75 – 25th, 50th and 75th percentiles of NDay, re-

spectively. 

Stations Min. Q25 Q50 Mean Q75 Max. 

Synoptic 57 60 60 60 61 63 

Climatic 135 142 160 163 174 205 

Rainfall 1 176 505 501 804 1166 

All 197 397 719 717 1016 1429 

In the analyzed period, there were 63 days when practically no data from rainfall stations were available, 

which is less than about 0.6% of the total number of days. In these cases, observations are mainly from 

synoptic and climatic stations. Although the minimum distance to the neighboring station varies from 3 to 

75 km on the day with the lowest number of observations, compared to 0.5 to 33 km on the day with the 

highest number of observations, the data quality is sufficient, considering data comes from synoptic sta-

tions. The number of observations is increased at rainfall stations, densely located in mountainous areas, 

which undoubtedly significantly increases the quality of reproduction of precipitation by interpolated 

fields. The density of the observation network, especially in mountainous areas, is crucial for the quality of 

interpolated fields, e.g., Herrera et al. (2018). As shown in Figure 1, the spatial distribution of the observa-

tional data is irregular, which may have uneven effects on the interpolation methods used. The exception-

ally high density of the measurement network is characteristic of the mountain and sub–mountain regions, 

where the spatial variability of precipitation is the highest. 

 

Fig. 1. Spatial distribution of observations for the days with an extreme number of observations. 
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The average annual number of observations per day varied throughout the years, with a median of 719 

(ranging from 592 to 821). The variability in the number of observations regarding the type of stations is 

shown in Figure 2. 

The decrease in the number of synoptic observations was compensated for by the increase in climatic ob-

servations, which was related to the change in the type of measurement stations. The number of synoptic 

stations ranged from 57 to 63; a decrease to 57 occurred in the last years of the period. In the analyzed pe-

riod, the number of climatic stations increased by approximately 17%, ranging from 137 to 202. Following 

an increase in the mid-1980s, the number of stations stabilized at 160 by the end of the period. The num-

ber of rainfall stations ranged from 401 to 580, and these had the most significant impact on the total 

number of observations. In this work, we used observation data from IMWM-NRI, which are subject to 

routine quality control. The local data archive for the analyzed period 1976-2005 was created in November 

2019. 

 

Fig. 2. The average annual amount of data for one day from 1976-2005 for climatic, rainfall, synoptic, and total ob-

servations. 

2.2. Methods 

We utilized the EURO-CORDEX simulation outcomes as-is, thus requiring a reference precipitation da-

taset that matched the node grid’s shape but was tailored to Poland’s region. Therefore, we selected a do-

main that is part of the EUR-11 grid. The spatial resolution of the EUR-11 rotated grid is 0.11 degrees, 

corresponding to a regular grid size of approximately 12.5 km. The analyzed area included only nodes lo-

cated in Poland, of which there were 2,137. We analyzed the last 30-year period (1976-2005) available in 

the historical simulations, and will be applied these to correct climate scenarios. 
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The principle of using all historical data available in the IMWM-NRI database was applied. This caused 

the number of observations to change significantly on individual days. On the other hand, it is known that 

interpolation methods are varyingly sensitive to this factor. The combination of both premises suggests 

that instead of using one sophisticated interpolation method for the entire period, the interpolation 

method should be selected separately for each day. The allegation of methodological discontinuity can be 

compensated by obtaining a more realistic and reliable precipitation pattern. The fact that the selected do-

main is a regular grid with a small step of 0.11 degree influenced the choice of interpolation methods. De-

terministic interpolation methods were used, such as bilinear, bicubic, inverse distance weighted, or near-

est neighbor. Precipitation observation fields were prepared using the above-mentioned interpolation 

methods available in the R Project for Statistical Computing (R Core Team 2018) and in the Climate Data 

Operators tools (CDO) (Schulzweida 2019).  

When evaluating interpolation through the leave-p-out cross-validation method (p is the size of the test 

set), the accuracy of the analysis may be impacted by high variability in the number of observations. Days 

with a small number of observations (minimum of 197) are assessed less thoroughly than days with many 

observations (median of 719). The division into training and test sets also introduces randomness into the 

evaluation process. This could be eliminated by taking as a constant test set the time series for 102 stations 

for which complete observational data are available. It was decided to abandon the method of dividing the 

observational data into the training and evaluation part, as it is usually done, for two reasons. Excluding 

the selected evaluation set from the interpolation process removes the data series most valuable for the 

interpolation. High variability in the number of observations per day (25% quantile is 397) for 25% of 

days of the analyzed period would mean resignation from 26% to 52% of the input data for interpolation 

methods. On the other hand, the leave-one-out computationally expensive method, is a measure of the 

additional errors incurred during its execution. For each point in the observational data on a given day of 

the period, interpolation is performed with the value for that point omitted from the input data. Further-

more, the considered point usually does not occur in the target grid, and its value must be somehow calcu-

lated (e.g., by choosing the nearest point from the target grid). The cross-validation error is the average of 

the sum of the additional error in obtaining the interpolated value and the error caused by not considering 

all points in the input data of the interpolation model. We conducted a comparative analysis of the ob-

tained observation fields for localization, where the complete time series of observations were available 

during the analyzed period.  

The degree of compliance of the obtained fields of observation was assessed based on statistical parame-

ters such as the Pearson correlation coefficient (RO), Root Mean Squared Error (RMSE), and a normal-

ized version of this parameter (NRMSE) as in Belo-Pereira et al. (2011) and Berezowski et al. (2016). In 

addition, the spatial compliance of the precipitation fields was also examined using the correspondence 

ratio (CR) (Belo-Pereira et al. 2011). For the obtained reference precipitation fields, the Mean Annual Cy-

cle (MAC), as established in Belo-Pereira et al. (2011), was also compared. The results of the analyses did 
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not allow us to determine the best method among the methods listed in Table 2. Thus, the methods deter-

mining the best gridded dataset for particular days based on the correlation coefficient and the corre-

spondence ratio were finally applied and presented in Section 3.10.  

2.2.1. Interpolation methods 

Areas of rainfall are unevenly distributed. The regions with no precipitation can border regions with in-

tense precipitation. This makes precipitation quite a problematic parameter to interpolate. In geostatistics, 

kriging methods are commonly used, but such an interpolation process sometimes causes problems. In 

Prasad and Sushma’s (2016) work, the result was satisfactory and encouraging for most of the data. How-

ever, where there was a small amount of data, the obtained values exceeded the range of observational 

data. 

We tested several other interpolation methods available in the R environment (R Core Team 2018) and 

the Climate Data Operators (CDO) (Schulzweida 2019). Table 2 lists the six selected interpolation tech-

niques and the names of the resulting sets with interpolated values. 

Table 2. Interpolation procedures used. 

Interpolated field Interpolation procedures 

v1 R (akima) – bilinear interpolation 

v1BI R (akima) – bicubic interpolation 

v2dis CDO – remapdis “Distance-weighted average remapping” 

v2nn CDO – remapnn “Nearest neighbor remapping” 

v3IDW R (gstat) – “Inverse Distance Weighted Interpolation” 

v3TPS R (fields) – “Thin Plate Spline regression” 

The interpolation procedures in the Akima package (Akima, Gebhardt 2022) allow for regular and irregu-

lar grids for the input data. The method is based on the modified triangulation Akima code. A bilinear in-

terpolation for regular grids was also added for comparison with the bicubic interpolation on regular grids. 

Calculations are made locally; thus, only neighboring points are considered. In rare cases, the interpolation 

with a linear function resulted in negative values corrected by the neighboring nodes’ mean value. 

The CDO interpolation procedures are based on the Spherical Coordinate Remapping and Interpolation 

Package (SCRIP) library developed at the Los Alamos National Laboratory (Jones 1998). Both are adapted 

to interpolate from an irregular grid, such as for measurement grid nodes. By default, the CDO operator 

‘remapdis’ uses four values from the nearest neighborhood to interpolate the destination value. The result 

value is the weighted average of these values, the weights being the reciprocal distance between the points. 

Nearest neighbor remapping ‘remapnn’ is the simplest spatial interpolation method. Every predicted point 

gets the value of the nearest measured point. The fields obtained by this method are not smooth, but they 

can provide good field interpolation where there is a sufficiently large number of observations. 

The ‘gstat’ package is a very rich package for complex geostatic analysis with a scope defined by the title: 

“Spatial and Spatio-Temporal Geostatistical Modelling, Prediction and Simulation” (Pebesma 2004; Gräler 
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et al. 2016). However, the Inverse Distance Weighted predictions method was selected to prepare the ref-

erence field and preserve the similarity of the methods of obtaining the remaining compared fields. The 

‘gstat’ package offers implementations of the Inverse Distance Weighted (IDW) method for different val-

ues of the power of the distance between nodes. The calculations were performed by utilizing the square 

of the distance between nodes to determine weights. Introducing this higher power value enhances the 

influence of values that are near the node. This contrasts with the CDO method known as ‘remapdis’ or 

‘Distance–weighted average remapping’, where the distance is not squared. 

The last of the selected interpolation methods is the ‘Tps’ procedure from the ‘fields’ package version 11.6 

(Nychka et al. 2017). The ‘Tps’ procedure fits a thin plate spline surface to irregularly spaced data, uses a 

special type of piecewise polynomials, and is expected to give better results. It was applied assuming de-

fault parameter values. 

2.2.2. Methods of evaluating the obtained reference fields 

The obtained reference fields were assessed in three ways: assessment of the general fit based on annual 

and monthly characteristics; methods of analyzing daily data (in particular, extreme values assessed with 

number of days in the month when precipitation does not exceed 0.5 mm (LD05) and the 95th percentile 

(Q95)); and the overall assessment of the fit of fields using illustrative diagrams. Individual parameters 

were calculated for selected 102 synoptic and climatic stations for which complete data series for the stud-

ied period were available. 

The first group includes field assessment of the annual sum of precipitation, the annual cycle of the 

monthly sum of precipitation, and the NRMSE for the monthly sum of precipitation. The overall level of 

matching reference fields was assessed based on basic statistical characteristics (extreme values, percentiles 

1% and 99%, median and Interquartile Range (IQR)) of observational data and reference fields.  

The annual cycle of the monthly sum of precipitation was used as described in Belo-Pereira et al. (2011), 

where the daily gridded precipitation dataset over mainland Portugal was assessed. For stations with com-

plete sequences of monthly rainfall totals, 30–year averages were calculated and compared with the results 

of corresponding calculations for the reference fields. The percentage difference for the multi-year average 

of the monthly sum of precipitation allows assessment of the quality of the reconstruction of the annual 

variability by the reference fields. 

To assess the compliance of the precipitation parameters in the interpolated fields, formulas such as the 

mean absolute error (MAE ) were used: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|
𝑛
𝑖=1

 (1) 

and the mean square error (MSE ): 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

 (2) 
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where y is the observation, ŷ is the interpolated value of y, and n is the number of points included in the 

calculation. 

Often, to calculate the error interpolation, the RMSE is used. However, in the case of precipitation, which 

is a spatially variable parameter, NRMSE may provide a better evaluation measure of interpolation error 

(Otto 2019). 

𝑁𝑅𝑀𝑆𝐸 =
√
1

𝑛
∑ (𝑦𝑖−�̂�𝑖)

2𝑛
𝑖=1

𝜎

 (3) 

where σ is the standard deviation of the sample of observations. This allows for assessing the interpola-

tion method, making it independent of local precipitation variability. Using NRMSE, the monthly sum of 

precipitation, the maximum values, and the quantile of 95% of the daily sum of precipitation in a month 

were also analyzed. The analysis of cases of absence or very small precipitation was carried out using the 

number of days per month for which the precipitation was not more than 0.5 mm. The assessment of the 

spatial fit of reference fields was carried out using the CR, the idea of which was taken from the work 

Belo-Pereira et al. (2011): 

𝐶𝑅 =
𝐴𝐼

𝐴𝑈
100% (4) 

AI is a measure of the intersection of the area where the precipitation in the interpolated field and the field 

of observation exceeds a given threshold. AU measures the sum of the areas where precipitation in the in-

terpolated field or the field of observation values exceeds a given threshold. The areas for ten thresholds 

of daily total rainfall from 0.1 mm to 50 mm were analyzed. The number of stations that met this condi-

tion over the analyzed period was adopted as a representation of the measure of the investigated areas. 

The RO was calculated for the entire period for stations with complete daily sequences of total precipita-

tion. The Pearson correlation coefficient was also calculated for each day in the warm half of the –year (W 

– months from May to October) and in the cold half of the –year (C – months from November to April). 

The mean values of RMSE and MSE for the precipitation statistical parameters listed below were used to 

construct the ranking of the interpolation methods. For stations with complete daily sequences of total 

rainfall, the calculated values of MSE and MAE were used for the maximum rainfall in the month (MAX), 

the monthly sum (MS) of precipitation, the number of days in the month when precipitation does not ex-

ceed 0.5 mm (LD05), and the 95th percentile (Q95). The lowest error value gave the highest position in the 

ranking by summing up the position numbers for individual interpolation methods and all parameters 

considered (MAX, MS, LD05, Q95). This allowed us to determine which methods provided the best fit 

using this approach. However, this is too general and a simplified solution, which does not allow for a 

good interpolation choice in all cases. The interpolation result for individual days depends, to a large ex-

tent, on the quantity and quality of available observational data. It is even sensitive to the distribution of 
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data in the domain. The sensitivity of the methods to small amounts of data and not evenly distributed 

points is very different. 

The variance inflation factor (VIF) was analyzed for the 30-year mean of the annual sum of precipitation. 

This parameter was analyzed in two cases: for interpolation methods (in 3.1 Average annual total of pre-

cipitation) and in the case of comparing the result fields of this work with fields from the CHASE projects 

(in 4. Discussion). For these purposes, a group of 96 stations was selected for which there was no missing 

data in the years 1976-2005. In addition, stations for which data from the CHASE project could not ob-

tain a resolution of 5 km (Berezowski et al. 2016) were eliminated. 

The formula (2.5) for the variance inflation factor (VIF) is based on the coefficient of determination, de-

noted R 2 . 

𝑉𝐼𝐹 =
1

1−𝑅2
 (5) 

The coefficient of determination R 2  for a series of observation values (y1, …, yn) each associated with a 

fitted value (f1, …, fn) is defined as follows: 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡

 (6)  

SSres is the total sum of squares of residuals: 

𝑆𝑆𝑟𝑒𝑠 = ∑𝑖(𝑦𝑖 − 𝑓𝑖)
2 (7) 

SStot is the total sum of squares (proportional to the variance of the data): 

𝑆𝑆𝑡𝑜𝑡 = ∑𝑖(𝑦𝑖 − 𝑦𝑚𝑒𝑎𝑛)
2 (8) 

The value of ymean is the mean of the observed data. The VIF factor for various methods of obtaining fi 

approximations allows for the assessment of changes in variance in individual methods. 

3. Results 

The IMWM-NRI observational data for the studied period of 30 years (1976-2005) contained a complete 

series of daily sums of precipitation for 102 synoptic and climatic stations. Most of the analyses were car-

ried out for the values of these stations. Sometimes, it was possible to use less stringent conditions for the 

completeness of the observational data, and more stations could be used (e.g. when analyzing the annual 

total of precipitation). However, when analyzing for MS and MAX, a complete series of observations was 

required, which limited the number of stations to 102. 
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3.1. Average annual total of precipitation 

For the analysis of the average annual rainfall over the 30-year period (1976-2005), small gaps in observa-

tional data were negligible. It was decided to extend the number of analyzed locations to 53 synoptic sta-

tions and 67 climatological stations. For 99 stations, the complete sequence of observations was available, 

whereas for 21 stations, a single lack of data lasting up to three months was allowed. The weakening of 

selection criteria made it possible to analyze the mean annual sum of precipitation for more stations. The 

mean value and the median for the average annual total rainfall (YS) were overestimated for the interpo-

lated data (the most for the v3IDW method). At the same time, the interquartile range for the observa-

tional data, amounting to 149, was much wider than for the interpolated data (from 69 to 112). This 

means the interpolated values were clustered in a narrower range (IRQ) around the higher values (me-

dian). Table 3 presents the essential precipitation statistics (YS min. – minimum, Q_0.01 percentile 1% 

(the probability that the value of the mean annual sum of precipitation is below this parameter is 0.01), YS 

Median – Median, YS Mean – Mean, Q_0.99 – percentile 99% (the probability that the value of the mean 

annual sum of precipitation is below this parameter is 0.99), YS Max. – maximum, IQR – Interquartile 

Range). 

Table 3. The characteristics of the mean annual sum of precipitation (mm) from 1976-2005. 

  YS Min. Q_0.01 YS Median YS Mean Q_0.99 YS Max. IQR 

Observations 489 497 589 644 1202 1796 149 

v1 512 528 631 658 1053 1615 103 

v1BI 513 530 636 668 1109 1625 112 

 v2dis 524 544 643 668 1051 1689 102 

 v2nn 482 510 633 659 1053 1704 110 

 v3IDW 529 595 741 751 1017 1563 69 

 v3TPS 543 554 640 668 1067 1400 96 

Analysis of these characteristics showed that the highest inconsistencies occurred for the v3IDW and 

v3TPS methods. For the v1BI method, there was an additional problem for three grid points located at 

the most southern end of the Polish border (Bieszczady National Park). For these three points, unrealistic 

values of the annual sum above 2600 mm were achieved (this is the maximum annual sum of precipitation 

for observational reference data), probably due to the extrapolation of data in the absence of a sufficient 

number of measurement points. As seen in Figure 3, for all methods except v3IDW, there is a middle 

band of lower annual precipitation totals and higher precipitation areas for the southern (mountain) and 

northern (coastal) extremes. For the v3IDW method, no such differentiation is apparent; the middle belt 

is not homogeneous (but it is impossible to distinguish), as is the case for other methods; and there are 

regular structures of lower and higher annual sums of precipitation. The remaining fields resemble the 

spatial distribution of annual rainfall totals for 2019 (IMGW-PIB 2020). 

The analysis of the extreme values and the annual precipitation sum of percentiles provided a good result 

only for the maximum value. For the considered 120 stations, this value was 2600 mm, which occurred in 
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2001. All interpolation methods (for v1BI, the controversial three grid nodes were removed from the anal-

ysis) indicated the same year of occurrence and values ranging from 2097 mm to 2626 mm. 

The variance inflation factor (VIF) was estimated for 96 stations for which time series of observations 

without missing data were available. The same stations were used in 4. Discussion for comparison of the 

resulting output methods of this work with data from the CHASE project (Berezowski et al. 2016; Piniew-

ski et al. 2021). The results of the analysis are included in Table 4. 

The lowest variance inflation factor VIF (formula 2.5) was achieved for the v3IDW method (R 2  is the 

lowest for this method). For the IDW method on the analyzed sample, the sum of residuals was the high-

est, i.e., the sum of squares of the difference between observations and interpolated values. Results 

showed the lower the value of VIF and R 2  (formula 2.6), the greater the SSres (formula 2.7) of the sum of 

squares of the difference of observations and interpolated values. A small variance of the interpolated val-

ues does not necessarily mean a good fit for the observational data. 

 

Fig. 3. Average annual total rainfall fields for interpolated daily rainfall fields from 1976-2005. 

Table 4. The variance inflation factor, the coefficient of determination, and the sum of squares of residuals for the 

mean annual sum of precipitation from 1976 to 2005. 

Interpolated field Variance Inflation Factor (VIF) Coefficient of determination (R 2 ) Sum of squares of residuals (SSres) 

 v1 6.3 0.84 507254.9  

 v1BI 6.1 0.84 525839.6  

 v2dis 6.3 0.84 508471.1 

 v2nn 7.5 0.87 425769.5 

 v3IDW 3.2 0.68 1012278.5 

 v3TPS 4.3 0.77 745762.9 
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3.2. Mean annual cycle of precipitation 

Based on the calculated 30-year average monthly sum of precipitation, the annual cycle of the monthly 

sum is presented in Figure 4. The overall assessment was positive for all models, and they all maintained 

the annual cycle. However, when calculating the percentage errors (in relation to the mean values for the 

observations) of the monthly averages, there was a division into two groups for better (methods v1, v1BI, 

v2nn) or worse (methods v2dis, v3IDW, v3TPS) reproduction of the annual cycle (Fig. 5). The lowest per-

centage error was achieved for the v2nn method for all months below 5%, and the highest for v3IDW for 

all months above 10%. 

 

Fig. 4. Annual cycle of the monthly total precipitation for 1976-2005 reconstructed in interpolated data. 

 

Fig. 5. Percentage error for the reconstruction of the annual cycle of the monthly rainfall total reconstructed in inter-

polated data. 

3.3. Monthly sum of precipitation 

The analysis of the NRMSE and MAE values for the monthly precipitation sum is included in Table 5. The 

mean value of the NRMSE varied from 0.22 to 0.36, while the maximum value for all methods was at level 
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2. The mean value of MAE changed from 5.06 to 9.47. The large spread was reached by the maximum val-

ues of MAE from 30.8 to 48.3 mm, while the standard deviation SD of the MAE showed moderate varia-

bility ranging from 5.5 mm to ~8 mm. The NRMSE rating indicated the v2nn method, but the mean MAE 

exceeded 40 mm. The minimum value of the MAE was achieved by the v3IDW method, although this had 

the highest average error value. 

Table 5. Statistics for the error of the monthly sum of precipitation. 

Interpolated field NRMSE Max NRMSE Min NRMSE MAE Max MAE Min MAE SD 

 v1 0.23 1.19 0.02 5.91 48.30 0.47 5.89 

 v1BI 0.23 1.19 0.04 6.06 48.25 0.92 6.00 

 v2dis 0.26 1.19 0.04 6.80 40.57 1.00 6.51 

 v2nn 0.20 1.20 0.00 5.06 41.69 0.00 5.56 

 v3IDW 0.36 1.22 0.03 9.47 30.80 0.75 7.94 

 v3TPS 0.33 1.21 0.23 8.64 32.03 3.93 7.83 

3.4. Maximum daily sum of precipitation in a month 

A similar analysis was carried out for the maximum daily sum of precipitation. The mean value of the 

NRMSE (Fig. 6) ranged from 0.26 to 0.42. The mean value of MAE ranged from 1.78 to 2.82.  

 

Fig 6. Map of the Normalized Root Mean Squared Error (NRMSE) for the maximum daily sum of precipitation in a 

month for the warm half of the –year (May to October) from 1976 to 2005. 

3.5. The 95th percentile of the daily total precipitation in a month 

The maximum values depend on random outliers, but the reconstruction of the range of high daily total 

precipitation can be assessed based on the 95th percentile (Q95).  
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The assessment according to the Q95 parameter was more homogeneous for the interpolation methods 

(Table 6). The mean value of NRMSE varied from 0.40 to 0.48, the mean value of MAE did not exceed 

2 mm, and the standard deviation SD of MAE changed from 1.89 to 2.27. Moreover, the lowest error pa-

rameters were achieved for the v3IDW method. 

Table 6. Statistics for the error of the 95th percentile of the daily total precipitation in a month. 

Interpolated field NRMSE Max NRMSE Min NRMSE MAE Max MAE Min MAE SD 

 v1 0.43 0.84 0.28 1.56 5.54 0.98 1.89 

 v1BI 0.43 0.89 0.28 1.58 5.52 0.97 1.91 

 v2dis 0.44 0.98 0.29 1.62 6.25 0.99 2.00 

 v2nn 0.46 1.19 0.22 1.67 7.22 0.98 1.89 

 v3IDW 0.40 0.78 0.24 1.47 4.29 0.82 1.92 

 v3TPS 0.48 0.83 0.36 1.77 5.26 1.19 2.27 

3.6. The number of days with the daily sum of precipitation below 0.5 mm 

Situations without precipitation or small daily total precipitation can be described using the number of 

days (LD05) in a month when the threshold was set to 5 mm.  

Table 7 presents the basic statistics of two commonly used metrics, NRMSE and MAE, for assessing the 

accuracy of an interpolated field of LD05. The table shows that v2nn had the lowest NRMSE (0.43) and 

the lowest MAE (1.22), suggesting it may be the most accurate method for interpolating the field. Con-

versely, v3IDW had the highest NRMSE (1.50) and the highest MAE (5.26), indicating that it may be the 

least accurate method. For the v3IDW and v3TPS methods, the value of NRMSE was greater than 1. This 

suggests that these methods may overestimate the number of days with precipitation. Additionally, the 

MAE’s standard deviation (SD) for these two methods was above 2, while it did not exceed 2 for the other 

methods. This indicates that the errors for v3IDW and v3TPS are more variable and less consistent than 

the errors for the other methods. Overall, these findings suggest that v3IDW and v3TPS may not be the 

most accurate methods for interpolating rainfall data in this context. 

Figure 7 illustrates that, with a few exceptions, the NRMSE for the v3IDW method was greater than that 

of the other methods throughout the entire domain.  

Table 7. Statistics for the error of LD, the number of days in a month with a threshold of 5 mm. 

Interpolated field NRMSE Max NRMSE Min NRMSE MAE Max MAE Min MAE SD 

 v1 0.62 1.12 0.18 1.94 3.89 0.36 1.57 

 v1BI 0.65 1.15 0.23 2.05 3.92 0.53 1.63 

 v2dis 0.76 1.54 0.23 2.48 5.40 0.54 1.81 

 v2nn 0.43 1.07 0.00 1.22 3.69 0.00 1.22 

 v3IDW 1.50 2.42 0.24 5.26 9.02 0.56 2.78 

 v3TPS 1.01 1.73 0.43 3.39 5.91 1.50 2.21 
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Fig. 7. Map of the NRMSE value for the number of days in a month with daily total precipitation less or equal to 0.5 

mm. 

3.7. Correspondence ratio (CR) for the daily sum of precipitation 

The CR measures the accuracy of spatial mapping by interpolation methods for areas with daily precipita-

tion exceeding a threshold. The threshold of 0.1 mm indicates that even a small amount of fallout has 

been detected, which is referred to as a ‘trace’ amount. Certain areas were recreated correctly at 80% using 

different methods. However, two methods (v3IDW and v3TPS) did not perform as well as the others, 

achieving only 64% and 69% accuracy, respectively.  

Figure 8 shows the analysis results for eight selected thresholds: 0.1, 1, 5, 10, 20, 30, 40, and 50 mm. The 

v2nn method achieved the best results, with close to 90% agreement for the 0.1 mm threshold and above 

80% for the 1 mm threshold. For the 50 mm threshold, the agreement for the v2nn method is above 60%, 

while it ranges from 36% to 49% for the other methods. 

3.8. Correlation coefficient (RO) for the daily sum of precipitation 

The RO value was analyzed in two ways. RO was calculated for the entire period, i.e., for the time series 

of interpolated values and observations. For all analyzed locations, the RO value was above 0.8, results are 

shown in Figure 9. 

In addition, the RO (the Pearson correlation coefficient) factor was calculated for individual days. In the 

absence of precipitation for more than 80% of observations, the RO was replaced with a measure of 

agreement in two-way tables. The basic characteristics calculated for these values indicated a slight differ-

entiation when dividing the period into a warm and a cold half-year. For the warm half-year, the 25% RO 

quantile for the v3TPS method was 0.6; for the v2nn method, it was 0.9; and for the others, it was 0.8. 
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The median value of RO for this half-year was 0.9. For the cold half-year, the 25% quantile of the RO 

value for the v3TPS method was 0.6; for the remainder, it was 0.8. The median in the cold half-year for 

RO for the v3TPS method was 0.8, and for the other methods was 0.9. 

 

 

Fig. 8. Correspondence ratio (CR) for the daily sum of precipitation. 

 

Fig. 9. Map of the correlation coefficient of the daily sum of precipitation for the period 1976-2005. 
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3.9. Ranking of interpolation methods based on the average error 

The calculated NRMSE/RSME and the MAE values allow ordering of the considered interpolation meth-

ods. A ranking of the methods was constructed considering these values for the maximum daily sum of 

precipitation in a month, the monthly sum of precipitation, the 95th percentile of the daily total precipita-

tion, and the number of days with precipitation less than or equal to 0.5 in a month. The order of the 

methods in this ranking were v1, v2nn, v1BI, v2dis, v3IDW, and v3TPS (Table 8). There are six possible 

orders or rankings based on a certain parameter. Each number from 1 to 6 represents a different ranking, 

with 1 indicating the highest rank and 6 indicating the lowest rank.  

Table 8. Table of points for the ranking for NRMSE and MAE. 
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 v1 2 2 2 2 2 2 1 2 2 2 3 2 2 2 2 2 32 

 v1BI 3 3 3 3 3 3 2 3 3 3 4 3 3 3 3 3 48 

 v2dis 4 4 4 4 4 4 3 4 4 4 5 4 4 4 4 4 64 

 v2nn 1 1 6 1 1 1 4 1 5 5 6 5 1 1 1 1 41 

 v3IDW 5 5 1 5 6 6 6 6 1 1 1 1 6 6 6 6 68 

 v3TPS 6 6 5 6 5 5 5 5 6 6 2 6 5 5 5 5 83 

3.10. The resulting method for determining interpolated fields of daily precipitation totals 

The choice of the reference field is essential because historical simulations show a differentiated fit to the 

field of observations, which translates into the selection and correction of climate scenarios and, thus, the 

conclusions resulting from the selected climate simulations.  

None of the interpolation methods were outrightly superior. Most calculations indicated the v2nn method 

as the most appropriate interpolation method. However, the v2nn method failed when there was too little 

data around the node. There were unacceptable situations in the data for this method when interpolated 

monthly sums of precipitation in several nodes were zero for several years. Some interpolation methods 

overestimated the number of precipitation situations, and the resulting field of interpolated values was 

non-non-realistically smooth. However, such methods are irreplaceable in the case of missing observations 

when the alternative is the inability to perform the interpolation. The solution may be to select the inter-

polation method for individual days based on, for example, the CR and/or the RO value.  

Analyses were performed for three datasets, in which the interpolation method was selected for each day. 

The adopted three selection criteria were based on the RO, the average correspondence ratio (CR_SR) for 

the thresholds of 0.1, 1, 5,10, and 20 mm, and based on both indicators together (RO_CR_SR). Three sets 

of complexes interpolated observational data RO, CR_SR, and RO_CR_SR were obtained by joining the 

appropriate fields interpolated for individual days. For the RO and CR_SR sets, the highest coefficient 
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value on a given day determined the choice of the interpolation method. For the RO_CR_SR set, the in-

terpolation method was selected based on rankings of the daily values of the RO and CR_SR parameters 

for the considered interpolation methods. Table 9 presents the statistics for each of the chosen interpola-

tion methods.  

Table 9. Statistics (the correlation coefficient – RO, the average correspondence ratio – CR_SR, the correlation coef-

ficient, and the average correspondence ratio – RO_CR_SR) for each chosen interpolation method for the sets of 

composite data from 1976-2005. 

Percentage of days for which the method was selected 

Interpolated obs. v1 v1BI v2dis v2nn v3IDW v3TPS 

RO 11.7 13.4 8.6 47.0 14.1 5.2 

CR_SR 7.7 5.8 4.8 72.7 3.6 5.4 

RO_CR_SR 26.3 9.4 7.6 51.3 3.8 1.6 

For each of the adopted criteria, the v2nn method – the nearest neighborhood – was chosen most often, 

in the case of the CR_SR criterion, as much as 72.7% of the time. For the datasets obtained in this way, an 

analysis of the fit was performed for the monthly sum (MS) of rainfall and the maximum rainfall in the 

month MAX for 102 stations. 

For the MS of precipitation for all complex sets, the 75th percentile of NRMSE was below 0.3. 

Table 10. Statistics (the correlation coefficient – RO_MS, the average correspondence ratio – CR_SR_MS, the corre-

lation coefficient of the average correspondence ratio – RO_CR_SR_MS) for the monthly sum (MS) of precipitation 

in composite sets. 

NRMSE 

Interpolated obs. Min. 1st Qu. Median Mean 3rd Qu. Max. 

RO_MS 0.03 0.16 0.24 0.24 0.28 1.19 

CR_SR_MS 0.02 0.14 0.23 0.24 0.30 1.19 

RO_CR_SR_MS 0.02 0.15 0.23 0.24 0.28 1.19 

MAE 

Interpolated obs. Min. 1st Qu. Median Mean 3rd Qu. Max. 

RO_MS 0.6 3.4 5.7 6.5 7.3 50.1 

CR_SR_MS 0.5 2.9 5.2 6.2 7.0 50.2 

RO_CR_SR_MS 0.5 3.2 5.4 6.3 7.1 49.8 

The maximum value for the NRMSE was greater than 1, but the value of NRSME=1.19 was only for one 

station (Czestochowa, 350190550), for the rest of this value is less than 0.76 (Table 10). The MAE statis-

tics improved significantly, and the mean value was approximately 6 (previously ranging from 5 to 9.5). 

The maximum value of the MAE of approximately 50 mm was reached for the mountain station 

(Kasprowy Wierch, 1987 m above sea level). For the remaining analyzed stations, it did not exceed 27 

mm.  

Table 11 contains statistics NRMSE and MAE for the maximum daily sum of monthly precipitation. The 

maximum NRMSE achieved for the Czestochowa station slightly exceeded 1; otherwise, this value was less 
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than 0.71 (previously 1.78 to 2.82). The maximum values of MAE were around 11 mm, previously ranging 

from 8 to 12. The 75th percentile for MAE did not exceed 3 mm, and the median and mean values were 

around 2 mm. 

Table 11. Statistics of the fit error for the maximum daily sum of precipitation MAX for composite interpolation 

sets. 

NRMSE 

Interpolated obs. Min. 1st Qu. Median Mean 3rd Qu. Max. 

RO_MAX 0.04 0.20 0.29 0.31 0.42 1.04 

CR_SR_MAX 0.03 0.17 0.28 0.31 0.43 1.04 

RO_CR_SR_MAX 0.03 0.19 0.30 0.31 0.42 1.03 

MAE 

Interpolated obs. Min. 1st Qu. Median Mean 3rd Qu. Max. 

RO_MAX 0.2 1.3 1.9 2.2 2.7 11.0 

CR_SR_MAX 0.2 1.2 1.9 2.2 2.7 10.8 

RO_CR_SR_MAX 0.2 1.4 1.9 2.2 2.7 10.9 

The average value of the CR for complex sets concerning individual interpolation methods was also ana-

lyzed. Figure 10 shows differences in the mean values of CR. 

 

Fig. 10. Differences in the mean correspondence ratio (CR) value for interpolation methods and complex sets RO, 

CR_SR, and RO_CR_SR. Rows refer to the complex sets RO, CR_SR, and RO_CR_SR. Columns corre-

spond to the interpolation methods. 
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In most cases, the CR was greater for the sets RO, CR_SR, and RO_CR_SR than for individual interpola-

tion methods. The exception was the nearest neighborhood method v2nn, for which the difference CR 

was positive for the thresholds 0.1, 1, 5, and 10. For the v3IDW and v3TPS methods, which were selected 

the least frequently in the result set according to the criteria based on RO and CR, the difference in the 

mean CR value was always negative. For the linear methods v1 and v1BI, the CR value was a few percent 

higher than for the complex sets only for the 1 mm threshold. 

4. Discussion 

The choice of the reference field is essential because the historical simulations show a differentiated fit to 

the field of observations. This translates into the selection and correction of climate scenarios, and thus, 

the conclusions resulting from the selected climate simulations.  

The series of observational data differ in the amount and quality of data for each day of the period under 

consideration. In turn, interpolation methods react differently to this input data variability, and some are 

not disturbed by even a very small number of observations. As shown in the works cited (Sheffield et al. 

2006; Prasad, Sushma 2016; Herrera et al. 2018; Crespi et al. 2019), these two factors significantly impact 

uncertainty in gridded precipitation datasets.  

A comparative analysis using different statistical parameters for several selected interpolation methods for 

the entire period did not yield a ‘best method’. The v2nn method was chosen most frequently; but, for 

several years, for several nodes, the monthly sum of daily precipitation was zero. Other interpolation 

methods significantly overestimated the area of precipitation occurrence, inflated the extreme values, or 

the resulting field of interpolated values was non-non-realistically smooth. Correlation and correspond-

ence ratio are important indicators of the quality of interpolated precipitation data, so a composite method 

based on both indicators was chosen. Three gridded datasets, RO, CR_SR, and RO_CR_SR, were pre-

pared, in which the interpolation method was selected based on the values of the daily coefficients RO, 

CR, RO, and CR, respectively. The analysis comparing the monthly rainfall sums, the maximum daily sum 

in a month, and the correspondence ratio showed that the sets RO, CR_SR, and RO_CR_SR allowed for 

constructing more reliable data than the sets obtained using individual interpolation methods. 

This approach allowed for the determination of gridded data based on different ways of selecting interpo-

lation methods. Precipitation analysis concerns both the amount of precipitation and the area of occur-

rence of this phenomenon, which can be described using indicators such as averaged CR and RO.  

Interpolated precipitation data with a resolution of 5 km and 2 km (denoted as CHASE_5KM and 

CHASE_2KM, respectively) were provided in the CPLFD-GDPT5 (Berezowski et al. 2016) and G2DC-

PLC (Piniewski et al. 2021) projects. For selected locations, data from 1976-2005 were chosen and com-

pared with analogous time series for datasets discussed in this paper (denoted as Comp_RO, 

Comp_CR_SR, and Comp_RO_CR_SR). The comparison was based on the MAE value for the annual 
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sum of daily precipitation. The values of this error for all years and models ranged from 35.4 mm to 136.4 

mm. The MAE values averaged over the period 1976-2005 are presented in Table 12.  

The average MAE value for CHASE_2KM was 6.6 mm smaller than that for CHASE_5KM. The values 

for the ‘Comp’ group of models were approximately 50% lower than those for the ‘CHASE’ group. The 

comparison of the MAE for the annual sum of precipitation for each year of the period is presented in 

Figure 11.  

Figure 11 shows that for all years, the error for the ‘Comp’ models was smaller than that for the ‘CHASE’ 

models. This suggests that choosing more appropriate basic interpolation methods for each day, based on 

the values of the daily coefficients RO and CR, can significantly improve the resulting datasets. 

The variance inflation factor of the average annual totals for compared fields was also analyzed (Table 13). 

The group of 96 stations was characterized by a high squared deviation from the mean, proportional to 

the variance value, SStot (2.8) was 3 203 554. 

As a result, the obtained VIF values ranged from 2.3 to 4.9, with values above 4.5 referring to the data ob-

tained in this study. The application of the interpolated field selection method for individual days of the 

period resulted in the decrease of the VIF value below the value of 5. 

 

Fig. 11. Mean absolute error (MAE) for the annual sum of precipitation for each year from 1976-2005. 
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Table 12. Mean absolute error (MAE) for the annual sum of precipitation averaged over the period 1976-2005.  

Model CHASE_2KM  CHASE_5KM  Comp_CR_SR Comp_RO Comp_RO_CR_SR 

Mean of MAE 99.4 106.0 49.1 53.3 50.1 

Table 13. The variance inflation factor, the coefficient of determination, and the sum of squares of residuals for the 

mean annual sum of precipitation for resulting output methods of this work and data from the CHASE projects for 

1976-2005. 

Interpolated field 
Variance Inflation Factor 
(VIF) 

Coefficient of determination 
(R 2 ) 

Sum of squares of residuals 
(SSres) 

CHASE_2KM  2.9 0.66 1 089 791.4 

 CHASE_5KM 2.3 0.56 1 413 943.4 

 Comp_CR_SR 4.9 0.80 652 693.7 

 Comp_RO_ 4.7 0.79 681 438.2 

 Comp_RO_CR_SR 4.9 0.80 647 471.0 

5. Conclusions 

This study introduced an innovative algorithm to determine the most appropriate interpolation method 

for each day based on the field fit characteristics at selected points. The selection procedure was based on 

the CR values (assessing compliance of areas with a given daily precipitation threshold) and /or RO (as-

sessing the linear correlation). It was assumed that the potential uncertainty related to the different inter-

polation approaches used for each day would be compensated by greater compliance with rainfall areas 

and by maintaining a linear correlation. Among other things, the values of the variance inflation factor 

(VIF) were compared for the interpolation methods (Table 2), the three sets of complexes interpolated ob-

servational data (RO, CR_SR, and RO_CR_SR), and datasets CHASE from the CPLFD-GDPT5 (Bere-

zowski et al. 2016) and G2DC-PLC (Piniewski et al. 2021) projects. The range of VIF values for the inter-

polation methods was from 3.2 to 6.3. For the sets of complexes interpolated observational data, VIF val-

ues were less than 5, which is lower than for most interpolation methods. For CHASE datasets, VIF was 

2.3 for 5 km resolution and 2.9 for 2 km resolution. However, when comparing the latter two groups of 

datasets using the mean absolute error MAE, the average MAE error for the data resulting from this work 

was found to be 50% smaller. Our results provide evidence that expanding the range of available interpo-

lation methods for each day and expanding the selection algorithm based on precipitation characteristics 

can significantly improve the resulting precipitation fields. 
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Hydrologic drought characteristics of selected basins in various climate zones of 

Lebanon 

El Tayara-Zobaida 
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Abstract 

River basins in Lebanon recently have experienced increasing droughts, which has prompted this study to characterize drought 

temporally and spatially. The study describes and analyzes hydrologic and precipitation conditions in seven river basins, representing 

most flow directions in various climatic zones. The characteristics of hydrologic and rainfall drought were discussed and analyzed, 

depending on available data from five climatic zones and fourteen hydrometric stations distributed in the river, allowing for a detailed 

analysis of drought. The Standardized Precipitation Index (SPI) and the Streamflow Drought Index (SDI) were calculated at 6-month 

intervals (first and second 6-months) using the DRINC program. The hydrologic and rainfall drought characteristics maps generated 

in the GIS platform may help to identify the degree of drought in the study areas. The investigation was carried out by examining the 

strength of relationships between SDI and SPI using bivariate correlation analysis. The significance of the correlation coefficient is 

used in this study to decide whether linear relationships between the SPI and SDI occurred in the first and second six months. 

Calculating the correlation coefficient for these variables based on hydrologic and rainfall data reveals an inconsistent correlation over 

different periods. 
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1. Introduction 

Lebanon has a Mediterranean climate and is vulnerable to hydrologic and rainfall droughts in most of its 

basins. Hydrologic and rainfall droughts will be some of the biggest natural disasters that future generations 

will face because average rainfall in Lebanon has declined from 740 mm (1901-1930) to 638 mm (1991-2020). 

This reduction caused a significant decrease in runoff; the annual flow in Lebanon (total streamflow) was 

4,300 Mm3/year in 1970, dropping to 3,171 Mm3/year in 2009, accompanied by depletion of groundwater 

levels and declines in many wells and springs1. 

The purpose of the present study is not to show the onset of drought in the Lebanese basins. As Tannehill 

(1947) wrote more than seventy years ago: “Drought has no beginning of it to have an end.” Rather, the 

purpose is to examine the drought characteristics in Lebanon through SDI and SPI indices and to test the 

significance of the correlations between them, over seven selected basins that represent the different climatic 

zones. The adoption of data in certain basins of Lebanon does not imply that the drought began on any 

 
1 https://unfccc.int/sites/default/files/resource/lebanon_snc.pdf. 

28

https://unfccc.int/sites/default/files/resource/lebanon_snc.pdf


specific date. However, relying on secular data can enable projections for the future by using arithmetic 

methods and models. 

Hydrological drought2 is the decrease of water in all elements of the hydrological cycle. It means less water 

flowing through rivers and stored in lakes, but also lower levels of groundwater flow. Hydrological droughts 

are complex, recurring hazards that can cause water shortages in streams or storage entities such as reservoirs, 

lakes, and groundwater. Hydrological drought occurs when low water supply becomes evident, especially in 

streams and groundwater, usually after many months of meteorological drought. Meteorological drought3 is 

defined as a shortfall of precipitation over some period of time. It is measured by comparing the amount of 

precipitation, e.g., for a season or a year, to an average over a longer time series (e.g., many seasons or years). 

Hydrological drought is based on the impact of rainfall deficits (including snowfall) in a specific area (as a 

basin) and time (as month, season, and year) on the water supply, such as streamflow, reservoir and lake 

levels, and groundwater table (Wilhite, Glantz 1985). The climatic zone must be considered because rainfall 

varies widely from one climatic zone to another (The National Weather Service). 

The question is, to what extent has hydrological drought affected the basins of Lebanon over the years? 

To answer this question, this research entails discussing and analyzing hydrologic pluvial droughts in some 

Lebanese basins and climatic zones during periods when data are available. The droughts are characterized by 

calculating the correlation between hydrologic pluvial droughts and their spatiotemporal variability based on 

basin characteristics. 

An extensive rainfall dataset for five climate zones (1901 to 2020) was available. Water measurements are not 

available over such long periods; some of these measurements began in 1939, and others more recently. 

The overall range of drainage measurement in the selected basins is from 1939 to 2020, beginning in 1939 

(El Litany), 1949 (El Awali western drainage), 1966 (El Bared), 1991 (El Assi), 1994 (Ed Damour), 1995 

(Abu Ali), and 2002 (El Hassbani). All are based on thematic information for each basin, e.g., topography, 

mean flow, and precipitation. 

2. Study area 

The basins were selected based on their different flow directions (north, south, and east) and their 

representation of different climatic zones (Fig. 1)4. The flow direction of El Bared, Abou Ali (located in the 

northern climatic zone), El Awali, and Ed Damour (located in the Mount Lebanon climatic zone) is 

westward, and that of El Assi (located in the Beqaa climatic zone) is northward. The El Hassbani and El 

 
2 University of Nebraska (NDMC) National Drought Mitigation Center. 
3Https://edo.jrc.ec.europa.eu/edov2/html/1001.html#:~. 
4 NB: The research relied only on hydrologic data from the stations that had a long measurement period and have continued to date 
(Table 3). 
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Litani (located in the Beqaa, Nabatieh climatic zones, and South climatic zone for El Litani only), flow 

southward, and then the Litani turns westward. The river basins selected all have permanent flows (Table 1). 

Table 1. Some characteristics of the 7 selected basins in Lebanon. 

Variable El Bared Abu Ali Ed Damour El Awali El Assi El Litany El Hasbani 

Basin area (km2) 262 476 302 298 1370 2153 578 

Max altitude (m) 2877 3093 1863 1945 2750 2543 2807 

Alt. of stream gauge 
(m) 

560 1092 360 500 918 1304 1000 

Slight slope (%) 6.3 14.3 26.9 0.87 35.1 33.7 15.9 

Strong slope (%) 18.5 21.1 22.8 0.198 24.3 23.7 24.3 

Very strong slope 
(%) 

41.6 37.4 32.6 0.418 27.3 29.1 40.2 

Very steep slope 
(%) 

33.6 27.2 17.7 0.298 13.3 13.4 19.6 

Mean stream slope 
(m/km) 

13 54 51 36 19 5 14 

Drainage density 
(km/km2) 

1.00 1.75 5.30 14.35 1.27 0.84 1.14 

Average annual 
precipitation 
(Mm3/year) 

225 505 335 320 1254 2078 598 

Average winter 
rainfall (Dec.-Mar.) 
1901-2020 (mm) 

636 636 656 656 582 582 613 

Source (m3/s) 
Shoukkar Kadisha Al-Safa 1 & 2 3 & 4 5 & 6 7 & 8 

1.15 0.72 1.42 0.48, 1.58 2.44, 0.95 31.8, 38.5 1.21, 1.9 

Recording of 
hydrological data 

1966/67 – 
2019/20 

1965/66 – 
2019/20 

1994/95 – 
2019/20) 

1979/80 – 
2019/20 

(1990/91 – 
2018/19) 

1939/40 – 
2017/18 

1992/93 – 
2017/18 

Discharge at mouth 
(Mm3/year) 

134.8 208.5 183 393.9 372.1* 379.3** 193.5 

Average Base Flow 
Index (BFI = Base 
flow volume/Total 
flow volume) 

Sea Mouth 
0.19 

Abou 
Samra 0.18 

Kousba 
0.15 

Jisr El Qadi 
0.09 

Es Safa 0.24 
Sea Mouth 

0.01 

Sea Mouth 
0.35 

Marj Bisri 
0.11 

Hermel 
0.72 

Qasmieh 
0.02 

Qaroun 
0.04 

Khardale 
0.27 

1 – Jezzin; 2 – El-Barouk; 3 – Ain Ez-Zarqa; 4 – Labouh; 5 – Anjar; 6 – Ez-Zarqa, 7 – Hasbani; 8 – Wazzani. 

*El Assi at Hermel; **Litani at Khardale; ***After Wazzani spring. 

NB: “Flows are never natural due to human interventions and manipulations: pumping, influence of dams, over- or 

underestimated, or calculated, interpolated flows”. (FAO 1974). 
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Fig. 1. Locations of the studied basins and climate zones of Lebanon. 

2.1. Physical characteristics of the selected basins 

The topography of the major river basins is described by the Digital Elevation Model (DEM), which was 

obtained from “ASTER GDEM is a product of METI and NASA” with a spatial resolution of 30 m × 30 m. 

The river network and basin boundary are automatically extracted from the DEM itself with ArcGIS 

software. Accordingly, the maximum altitude of the basins is from 3,093 m at Abu Ali to 1,863 m at Ed 

Damour. Slight slopes are 35.1% and 33.7% at El Litani and El Assi, respectively. El Bared, Abu Ali, El 

Damour, El Awali, and El Hasbani have strong slopes, ranging from 32.6 to 41.8%. 

A brief description of the characteristics of rivers of the selected basins follows. El Bared originates from Jurd 

al-Danniyeh. The three main springs are the Sukkar (1.15 m3/s), Sanubar, and Brisa. The river has a 

confluence with the Mussa River. Abu Ali originates from the Qadisha (0.72 m3/s) and Thahre El Qadib in 

Jabal El Makmel. 

Ed Damour descends from the springs of El Safa (1.42 m3/s) and those of Jabal El-Barouk and is 

characterized by permanent flow and many valleys. El Awali arises mainly from El Barouk Spring (1.58 m3/s) 

in Jebal El Barouk-Niha. It also receives water from the artificial Lake Qanan. 
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El Litani is the longest Lebanese river (174 km, entirely inside Lebanon), extending over the Beqaa Plain and 

to the south, then heading westward to the sea. The principal springs of El Litani are Ez Zarka (38.5 m3/s) 

and Anjar (31.8 m3/s). Hasbani is a transboundary river, a major tributary of the Jordan River, descended 

from Jabal Hermon and runs about 25 km in Lebanon. The principal springs are El Hasbani (1.21 m3/s) and 

El Wazzani (1.9 m3/s); other springs are located in the southeastern part of Beqaa and flow southwards. 

El Assi is also a transboundary river shared by Lebanon, Syria, and Turkey, it is about 33 km in length in 

Lebanon, and the main springs are Ain Zarqa (2.44 m3/s) and Labouh (0.95 m3/s). 

2.2. Hydrological drought history of the basins studied  

The signs of drought include decreases in the minimum average of the base flow index, such as those 

recorded in Table 1. El Damour is an example at the Sea Mouth gauge with an index of 0.01. 

The historical drought study is based on the available data for hydrological measurement periods ranging 

from 15 to 79 years (Table 2). This table shows that, in downstream coastal rivers, drought events occurred 4 

to 23 times, with flows falling an average of 30 to 88%. For the interior rivers, drought events occurred 7-36 

times, with the flow rate dropping 30-91% below average. It must be said that flow measurements, at most 

gauging stations, are “observed, not natural” flows due to human interventions and manipulations such as 

pumping and the influence of dams that lead to under- or over-estimated and calculated flows (FAO 1974). 

Table 2. Hydrological drought history of 7 rivers selected in Lebanon. 

 

Name Station Periods 
Number 
of years 

Average 
(m3/s) 

Number of 
years with 
30% below 
the average 

Average 
below 30 
to 91% 
(m3/s) 

Range of 
average 

below 30% 
(%) 

C
o

as
ta

l 
ri

ve
rs

 

El Bared Sea mouth 
1966/67-1972/73 
1995/96-2019/20 

7 
25 

4.61 10 2.9-1.60 36-65 

Abu Ali Abu Samra 1995/96-2019-20 25 6.98 4 4.2-2.57 38-62 

Ed Damour Sea mouth 1994/95-2019/20 26 5.39 7 3.7-1.39 31-74 

El Awali Saida 
1949/50-1972/73 
1991/92-2019-20 

24 
29 

11.1 23 7.8-1.33 30-88 

In
te

ri
o
r 

ri
ve

rs
 El Assi Hermel 1991/92-2018/19 28 11.78 8 8.2-4.67 30-60 

El Hasbani Aft. spring 2002/03-2017/18 15 3.91 7 2.3-0.99 40-75 

El Litani Khardale 1939/40-2017/18 79 12.03 36 8.2-1.10 32-91 

3. Availability of hydrologic and rainfall data in the study area 

The SDI index was computed for fourteen hydrological stations with different measurement periods ranging 

from 1931 to 2020, and the SPI was calculated for five climatic zones with data covering 1901-2020. For 

comparison of annual drainage and precipitation in a basin, the periods were matched for the two types of 

data. 

 

32



3.1. Rainfall characteristics of 7 climatic zones 

Climate zone identification and the rainfall dataset are based on the work of the World Bank5, which presents 

high-level information on Lebanon’s climate zones and the seasonal cycle of precipitation for the latest 

climate data 1901-2020. Climate zone classifications are derived from the Koppen-Geiger climate 

classification system based on seasonal rainfall and temperature patterns, which separates six main climatic 

areas: Beirut, Mt. Lebanon, North, Beqaa, South, and Nabatieh. 

The average annual rainfall declined over a century from 719 to 651 mm, with 60% falling in the rainy season 

(Nov.-May). According to FAO (2018), the rainfall has decreased by 40-50%, and as a result, many springs 

and wells have dried up. It should be noted that the decrease in rainfall affects all seven climatic zones but to 

different extents. Many studies attribute the decrease in runoff rates to a reduction in rainfall and snowfall 

(Haddad et al. 2014) that affects the recharge of the groundwater table and the springs. 

3.2. Annual and seasonal average values of rainfall for climatic zones  

Statistical analysis of the annual and seasonal average rainfall for the climatic zones in Lebanon shows that the 

second season (December, January, and February) has the most abundant precipitation (Fig. 2). Note that the 

annual and seasonal average rainfall in the Beqaa climatic zone has the lowest average without calculating the 

amount of equivalent snow water. The lowest average is recorded in June, July, and August. The annual and 

monthly rainfall for all zones has the characteristics of a Mediterranean climate, with the highest total rainfall 

recorded in Jan. The lowest rainfall total is observed in Aug. About 70% of the annual rainfall occurs in the 

winter months, from December to February, and 21-24% in spring and autumn. 

 

Fig. 2. Annual statistics (a) and seasonal average (b) rainfall of climatic zones in Lebanon (1931-2020) (reference: World 

Bank: Climate Change Knowledge Portal). 

 
5 https://climateknowledgeportal.worldbank.org/. 
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3.3. Hydrological statistics of the river basins  

The Hydrological Service of Office National of El Litani provides hydrometric data for different periods at 

the stations of seven basins (Table 3). Fourteen of the 29 gauging stations were accredited by the long 

measurement period, despite a gap for some years (especially 1975-1989), and 15 were rejected due to the 

short duration of the measurement. A period of 25 to 70 years was selected for the hydrological drought 

study based on data quality, recorded length, and area coverage. For each basin, a discharge time series was 

available for various periods between 1931 and 2020 (Fig. 3). 

Table 3. The average annual flow of the gauging stations and the corresponding recording date of 7 rivers in Lebanon. 

Basin Stations6 
Area 
(km²) 

Elva 
(m) 

Latitude 
DD 

Longitude 
DD 

Recorded 
years 

Discharge 
(Mm³) 

Runoff 
(mm) 

El Bared 

Tirane 40 510 34.405 36.03 1967-1969 116.2 2916 

Qabaait 161 390 34.4533 36.12 1967-1969 114 708 

Sea Mouth 262 0.5 34.4983 35.9733 1960-2020 149.07 569 

Abu Ali 

Tirane 40 510 34.405 36.03 1967-1969 116.2 2916 

Qabaait 161 390 34.4533 36.12 1967-1969 114 708 

Sea Mouth 262 0.5 34.4983 35.9733 1960-2020 149.07 569 

Ed 
Damour 

EL Safa 40 518 33.7133 35.6533 
1960-1979 
1990-2001 

30.33 758 

Rachmaya 52 447 33.735 35.6383 1960-2001 55.43 1066 

El Hamam 77 45 33.6816 35.49 1966-1973 36.78 478 

Jisr El Qadi 185 250 33.7133 35.5666 1960-2001 127.52 689 

Sea Mouth 302 0 33.7061 35.4594 1994-2020 157.39 521 

El Awali 
Bisri 222 385.8 33.4233 35.5616 

1950-1989 
2001-2020 

115 518 

Saida -Sea M. 298 3.5 33.4116 35.4083 1940-2020 352 1181 

El Assi 

Hermel 1370 585 34.34 36.38 
1931-1979 
1990-2019 

369.00 269 

Wazzani Spring - 271.2 33.2683 35.63 
1960-1969 
2003-2018 

102.95 - 

Before spring 340 548 33.4133 35.6966 1960-1979 25.73 76 

Fardis Bridge 448 494.6 33.3666 35.6533 
1960-1979 
2002-2018 

60.29 135 

Aft. Wazzani spr. 526 183 33.2572 35.6216 2002-2018 127.30 273 

El Litani 

Qabb elias 19 914 33.79 35.83 
1960-1979 
1990-2001 

18.76 987 

Jelala 22 890 33.7883 35.8683 1960-1979 6.67 303 

Berdaouni 77 866 33.7783 35.895 1950-2001 33.32 433 

Ghzayel 126 867 33.7533 35.9166 1990-2001 107.84 856 

Mansourah 1345 859.3 33.68 35.6616 1931-1969 247.05 184 

Qaroun dam 1545 866 33.7666 35.8966 
1939-1947 
1969-2011 

327.56 212 

Quelieh 1680 521 33.44 35.6633 1930-2011 358.63 213 

Khardale 1808 239.2 33.3216 35.5483 1931-2018 379.30 210 

Ghandourah 2066 859.3 33.68 35.6616 1960-2012 298.50 144 

Qasmieh 2153 0 33.3216 35.25 
1960-1970 
1990-2018 

279.62 130 

 
6 The research relied on the hydrological data of the stations in bold, which had a relatively long measurement period and have 
continued to date, to compare them with the rainfall data for the same period. 
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The streamflow stations in El Bared and Ed Damour basins have more missing data, and it was difficult to 

analyze drought with minimum data availability. For these two basins, the gauging stations used are El Bared 

at Sea Mouth, Abu Ali at Kousba, and Abou Samra, which have a minimum of 25 years of data. But the other 

five basins fulfill the minimum data length required (30 years) for drought analysis: Ed Damour at EsSafa, Jisr 

El-Qadi, and Sea Mouth. El Awali at Bisri and Sea Mouth, El Assi at Hermel, El Hasbani at Wazzani Spring 

and Fardis Bridge, El Litani at Qaroun Dam, Khardale, and Qasmieh.  

The annual discharge at sea mouths of rivers El Bared, Abu Ali, Ed Damour, El Awali, and El Litani ranges 

between 149.07 and 379.3 Mm3. The annual discharges of El-Hasbani and El-Assi before leaving the 

Lebanese territories are respectively between 127.3 and 369 Mm3. 

 

Fig. 3. Annual statistics (a) and seasonal average (b) of discharges of 7 basins in Lebanon (Cf. Table 3). The stations with 

long periods of measurement were adopted. 

Comparing measuring stations, El Litani at Khardale has a high flow, followed by El Assi at El Hermel. El 

Litani is the only one of these rivers on which a dam is located (at Qaraoun). Nevertheless, the discharge at El 

Khardale is the most susceptible, as it has been decreasing dramatically (as shown later). 

In four of seven basins (El Litani, El Hasbani, El Damour, and El Awali), the average runoff has one peak in 

the winter (in January, February or March) before snowmelt. In the three others (El Assi, El Bared, and Abu 

Ali), the average runoff has one peak in the spring (April). The lowest runoff for all rivers occurs in the 

summer, from July to September, except in El Hasbani and El Assi, where minimum flows are from October 

to December. 

The drainage of rivers depends on seasonal rainfall, and it varies widely from the rainy to the dry season (Ed 

Damour, El-Hassbani). The drainage of rivers that depend on melting snow and water springs decreases the 

35



difference between seasons (El Assi and El Bared). The drainage of the El Awali and El Litani rivers cannot 

be relied upon due to pumping (El Awali) or retention of the discharge (Qaraoun Dam) for technical reasons. 

For each basin, one close-by climatic zone was chosen that seemed representative of the climatic conditions of 

the basin, and that was the most representative of topographical factors such as elevation and exposition. 

4. Methodology 

Managing water resources requires establishing drought characteristics in the form of published indices that 

are easy to interpret and can be applied to improve knowledge of the intensity and severity of drought. 

Despite various ways of evaluating and defining hydrological drought, all are focused on the same issues with 

a time-step evaluation of the phenomenon (day, decade, month, season, and year). By accepting the definition 

of low flow for a period, the criterion for the threshold selection and separation of hydrological droughts 

from a series of low-flow events followed the classification proposed by Dracup et al. (1980). 

Hence, the threshold level in this study depends on deviation from normal mean discharge for an average 

period of months, seasons, and years. Another distinguishing feature of drought is its duration, taking two to 

three months to become established, and possibly continuing for months or years. In a country with a small 

area, such as Lebanon, the entire country may be affected since droughts are usually regional phenomena; 

they result from large-scale anomalies in atmospheric circulation patterns that become established and persist 

over periods of months, seasons, or longer.  

Drought is quantified in the form of simple indicators. Among these indicators7, are two that will fit this 

threshold and have advantages: 

1. The standardized precipitation index (SPI) is a statistical indicator comparing the total precipitation 

received at a particular location during n months with the long-term rainfall distribution of the same 

period at that location. It applies to all climate regimes. 

2. The streamflow drought index (SDI) uses monthly streamflow values to monitor and identify drought 

events represented by a particular gauge. The advantage of this indicator is that missing data is allowed, 

that is, although some years may be missing (Table 3), as in this study, the longer the streamflow record, 

the more accurate the results. As with SPI, various timescales can be examined. The streamflow drought 

index is defined as a decrease in the amount of available water in all of its forms. 

 

 
7Many indices of drought are in widespread use today, which is gaining increasing popularity in the USA, is the Standardized 
Precipitation Index (SPI) developed by McKee et al. (1993). 
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4.1. Assessment of hydrological and rainfall droughts in seven selected basins in Lebanon 

4.1.1. Rainfall drought analysis using Standardized Precipitation Index (SPI) 

The Standardized Precipitation Index (SPI) has been recognized as a standard index that should be used for 

quantifying and reporting rainfall drought; SPI is based on time series drought characteristics: 

𝑆𝑃𝐼 =
𝑥𝑖 − �̅�

𝜎
 

where: xi is the monthly precipitation for the climatic zone (1901-2020); �̅� is the mean of the monthly 

precipitation; 𝜎 is the standard deviation of the monthly precipitation. 

The calculation of SPI reveals temporal and spatial relationships of series, allowing quantification and 

comparison with different durations and providing information on differences in drought behavior among 

climatic zones.  

The monthly precipitation data were analyzed and processed by calculating the SPI using the Software 

DrinC8. This software for SPI is used to derive 6-months SPI values for each climatic zone, where the  

6-monthly value gives intermediate-term drought. The drought categories are defined by the classification 

based on SPI (Edossa et al. 2009) and SDI (Hong et al. 2014). The result obtained from software based on  

6-months SPI time series, the maximum drought severity that occurred in the two climatic zones of Nabatieh 

and south, was respectively –4.67 and –4.37 in the second 6-months (Apr.-Sep.) of the year 1989. The 

drought frequency (%) in the third category shows that the extreme drought (˂–2.0) occurred in the first 6-

months (Oct.-Mar.) in Nabatieh and in the second 6-months in the Beqaa (Table 4). The maximum moderate 

and severe drought frequency ranges between 0.62 (North) and 0.3 (Beqaa) in the first 6-months of the year. 

Table 4. Drought frequency9 in the severity category according to SPI of the climatic zones in Lebanon. 

Climatic zones 
Moderate (–1.0, –1.49) Severe (–1.5, –1.99) Extreme (˂–2.0) 

Oct.-Mar. Apr.-Sept. Oct.-Mar. Apr.-Sept. Oct.-Mar. Apr.-Sept. 

North 0.62 0.50 0.14 0.25 0.24 0.25 

Mt Lebanon 0.55 0.44 0.25 0.31 0.20 0.25 

Beqaa 0.50 0.38 0.30 0.31 0.20 0.31 

South 0.53 0.38 0.29 0.38 0.18 0.25 

Nabatieh 0.50 0.47 0.19 0.27 0.31 0.27 

The probability of occurrence of drought, calculated in this study, for climate zones in South, Beqaa, 

Nabatieh, Mount Lebanon, and North, relative to the year and severity of events is: 

 Oct.-Mar. Apr.-Sept. 

 
8 www.ewra.net/drinc. 
9 Drought frequency of 1. 
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Moderate 1 in 15 to 1 in 20 years 

Severe 1 in 20 to 1 in 40 years 

Extreme 1 in 24 to 1 in 40 years 

During 120 years in all climatic zones, drought ranged from 30% to 14%. In the north, a drought recurrence 

was recorded in 30.8% of the years, followed by Mt. Lebanon and the Beqaa with 29.8% of the years as a 

recurring drought. In the South and Nabatieh, 14% and 25.7% of drought recurrences were recorded. 

The maximum of extreme drought recurrence was observed in the Beqaa for 4 years:1927-28,1965-66,1984-

85 and 2009-10 (Apr.-Sep.), in the North for 5 years: 1932-33, 1959-60, 1972-73, 2007-08 and 2013-14 (Oct.-

Mar.) and in the Nabatieh also for five years: 1932-33, 1950-51, 1959-60, 1978-79 and 1998-99 (Oct.-Mar.). 

4.1.2. Hydrological drought analysis using the Streamflow Drought Index  

The SDI method, developed by Nalbantis (2008), was used to characterize the hydrological drought events 

for the studied area. To compute the SDI values, the monthly observed flows of the time series are assumed. 

Its calculation is similar to SPI and, therefore, has the same characteristics of simplicity and efficiency. The 

SDI is based on monthly observed streamflow volumes at different time scales and thus offers the advantage 

of representing streamflow drought in the short, medium, and long term. The formula is (Gumus, Algin 

2017): 

SDIij = ∑ 𝑄𝑖𝑗

6𝑘

𝑗=6(𝑘−1)+1
 𝑘 = 1,2 

where: Qij is river discharge for hydrological year (i), and month (j) within that hydrological year (October through 

September). Based on these series, the cumulative streamflow volume is computed where k = 1 and k = 2 are the 

first 6 months (Oct.-Mar.) and second 6 months (Apr.-Sept.) periods, respectively in a hydrological year.  

The SDI values have been classified by (Hong et al. 2014) into eight classes that vary from extreme wet to 

extreme drought. The classes of wetness and dryness of SDI range between –2 and +2. 

Hydrological drought is characterized by duration (D), severity (S), magnitude (M), and relative frequency (RF). 

Drought duration is the time between consecutive drought events (onset and end of drought). The duration 

(D) is from the initiation of a negative SDI until the flow returns to a positive SDI value (Tareke, Awoke 2022). 

The relative drought frequency is the ratio of the number of droughts (n) with negative SDI in drought 

duration and the total number of drought years in the analysis (N), and RF is defined as (Tareke, Awoke 

2022): 

𝑅𝐹 =
𝑛

𝑁
 ∙ 100 
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4.1.3. Spatial distribution of droughts in the selected basins and climatic zones using Inverse 

Distance Weighting  

The spatial distribution maps are rendered using the method of inverse distance weighting (IDW). This 

method is a powerful deterministic technique for the spatial interpolation of results, and it is an inherent 

advantage that is relatively fast in computation, which improves the ease of interpretation (Shepard 1968; Lu, 

Wong 2008). Commercially available software (ArcGIS) was used to obtain the spatial distribution, and the 

maps were generated using ArcGIS 10.7 for the studied area. The IDW technique assumes that unmeasured 

near points have a higher probability of weighting than far points (Gumus, Algin 2017). 

Researchers assume that the IDW method provides a similar output map to that of the Gaussian process 

regression method (Kriging), which is useful for smaller areas or in the case of high station density (Gemmer 

et al. 2004). The power parameter (which controls the values of the interpolated sample over the expected 

location of a searched radius) is the main factor affecting the accuracy of the IDW method. Higher power 

values result from nearby samples, which affect estimation, and the resulting spatial interpolation surfaces 

become more detailed. 

4.2. Correlation between hydrologic and rainfall drought indicators  

Pearson’s correlation coefficient (r) describes the strength and direction of a linear relationship between two 

quantitative variables, although the interpretation of the strength of this relationship varies between 

disciplines. The strength of r values has been interpreted as “greater than +0.5 (strongly positive) and less 

than –0.5 (strongly negative).” As an inferential statistic, r is used to test statistical hypotheses of significance 

for a linear relationship between two variables. However, the reliability of the linear model also depends on 

the length of data in the sample. 

The significance of the correlation coefficient is used in this study to decide whether the linear relationship 

between the SPI and SDI is strong, moderate, or weak. The hypothesis t-test, comparing SPI and SDI 

correlation coefficients, addresses whether there is a linear relationship between them by using the t observed 

and the 𝑟-value. 

5. Results 

The study of SPI and SDI indices based on the hydrologic and rainfall data of the seven river basins and the 

five climatic zones, which were calculated on timescales of 6-months, clarifies how the hydrologic and rainfall 

droughts in the critical situation are achieved. 
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5.1. Hydrologic and rainfall drought statistical analysis 

The spatial distributions covering climatic zones based on the SPI values demonstrate the highest severe and 

extreme drought events observed in the first 6-months for the years: 1902/03, 1921/22, 1927/28, 1965/66, 

1986/87, 1988/89, 2009/10, and for the second 6-months for the years: 1932/33, 1959/60, 1972/73, 

1978/79, 1998/99, 2007/08, 2013/14 (Fig. 4). The spatial distributions based on the SDI values (Fig. 5) 

indicate the highest severe and extreme drought events for the first and second 6-months are encountered in 

the years 1985/86, 1989/90, 1998/99, 2000/01, 2007/08, 2013/14 (at most of the stations for this year), and 

2017/18, with an occurrence of 4 to 18%. 

 

Fig. 4. Temporal standardized precipitation index (SPI) values of the five climatic zones in Lebanon according to two 

seasonal periods (Oct.-Mar. and Apr.-Sept.) (1901/1902-2019/2020). 
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Fig. 5. Temporal drought index (SDI) values of selected stations in river Lebanon according to two seasonal periods 

(Oct.-Mar. and Apr.-Sept.). 
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5.1.1. Statistical Analysis of the Standardized Precipitation Index  

The SPI distributions demonstrate that some climatic zones (Tables 4 and 5) exceed the threshold of classes 

of extreme drought (SPI < –2) and extreme wet (SPI > 2). The variation in SPI mean values shows that the 

second 6-months period of the years 1927/28, 1932/33, and 1988/89 are characterized as extreme drought 

events. 

The median of the SPI (Table 6) of the first and second 6-months periods at climatic zones in Lebanon from 

1901 to 2020 is about mildly wet. The recurrence of extreme drought in the south, in Beqaa, Nabatieh, Mt. 

Lebanon, and North, ranged from 3 to 5 times over 120 years. 

Table 5. Severity category according to SPI of climatic zones supplying studied basins (1901-2020). 

Climatic zones 
that affect the 
basins 

Moderate drought (%) Severe drought (%) Extreme drought (%) 
The sum of the three 
drought classes (%) 

first  
6-months 

second  
6-months 

first  
6-months 

second  
6-months 

first  
6-months 

second  
6-months 

first  
6-months 

second  
6-months 

North (El Bared 
& Abu Ali) 

10.8 6.7 2.50 3.3 4.17 3.3 17.5 13.3 

Mt Lebanon  
(Ed Damour) 

9.17 5.8 4.17 4.2 3.33 3.3 16.7 13.3 

Mt Lebanon-
south (El Awali) 

8.34 5.4 4.17 4.6 2.92 3.3 15.4 13.3 

Beqaa (El Azzi) 8.33 5.4 5.00 4.6 3.33 3.3 16.7 13.3 

Beqaa-Nabatieh 
(El Hassbani) 

7.50 5.4 3.75 4.1 3.75 3.7 15 13.2 

Beqaa-Nabatieh-
South (El Litani) 

7.48 5.3 3.89 4.5 3.31 3.6 14.7 13.4 

Table 6. The median of SPI at climatic zones in Lebanon (1901-2020). 

Climatic zone 
Median of SPI 

Description Value 
Oct.-Mar. Apr.-Sep. 

South 0.12 0.15 

Mildly wet –0.99, 0.99 

North 0.01 0.09 

Nabatieh 0.08 0.18 

Mt Lebanon 0.05 0.09 

Beqaa 0.02 0.09 

In the first 6-months period, the greatest drought is recorded in the north climatic zone, and in the second  

6-months period, it is recorded in the northeastern Beqaa zone. 

The percentage of severe and extreme droughts ranged between 2.5 and 5% in the five climatic zones. 

The frequency of normal conditions was 52.5% in the first 6-months periods and 55.8% in the second  

6-months period over all five zones. 

The median SPI for the first and second 6-months was calculated for each climate zone from 1901/02 to 

2019/20. 
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The median of the five climatic zones (Table 6) for the first and second 6-months periods SPI is mildly wet. 

It ranged between 0.01 in the first 6 months (North climatic zone) and 0.18 in the second 6 months 

(Nabatiyeh climatic zone). The probability of the median is at least 50% will be less or greater than or equal to 

–0.99 and +0.99, which means mildly wet conditions should be expected to occur in one out of two years. 

5.1.2. Statistical Analysis of the Streamflow Drought Index  

Since SDI is a point or site-specific drought indicator, the discussion here considers the fourteen gauging 

stations of the basin. Hydrological drought is progressing gradually due to the scarcity of rainfall, which stops 

or decreases for some consecutive months from April to November. Therefore, this study focuses on two 

seasons based on the first and second SDI-6 of hydrological drought analysis that can summarize the annual 

drought conditions. The result indicates that the frequency of drought based on SDI is similar for both 6-

months seasons and seven studied basins(Table 7), even though the drought is not very strong. The temporal 

and spatial variation of streamflow drought in the study area using SDI indicates that the lowest negative SDI 

value (–2) was registered for one year at nine measurement stations out of 14, as shown in Figure 5. 

Table 7. Frequency of hydrologic droughts in 7 basins of Lebanon. 

Basin 
Hydrologic 
gauging 
station 

Moderate hydrological 
drought (%) 

Severe hydrological 
drought (%) 

Extreme hydrological 
drought (%) 

The sum of the three 
drought classes (%) 

first  
6-months 

second  
6-months 

first  
6-months 

second  
6-months 

first  
6-months 

second  
6-months 

first  
6-months 

second  
6-months 

El Bared Sea Mouth 9.1 9.1 9.1 6.1 0 3.0 18.2 15.2 

Abu Ali 
Abu Samra 3.2 6.5 9.7 6.5 0 3.2 12.9 16.2 

Kousba 16.0 12.0 4.0 4.0 0 4.0 20 20 

Ed 
Damour 

Es Safa 7.0 16.3 4.7 4.7 2.3 0 14 21 

Jisr El Qadi 0 4.8 4.8 14.3 4.8 0 9.6 19.1 

Sea mouth 7.4 11.1 11.1 3.7 0 3.7 18.5 18.5 

El Awali 
Marj Bisri 15.8 0 0 5.3 0 5.3 15.8 10.6 

Saida 9.1 6.1 0 6.1 3.0 3.0 12.1 15.2 

El Assi Hermel 13.0 8.7 4.3 0 0 4.3 17.3 13 

El 
Hasbani 

Wazzani 14.3 7.1 0 7.1 0 0 14.3 14.2 

Hassbani 18.8 12.5 0 6.3 0 0 18.8 18.8 

El Litani 

Qaroun 12.2 6.1 4.1 2.0 0 6.1 16.3 14.2 

Qasmieh 8.0 8.0 4.0 0 0 0 12 8.0 

Khardale 15.2 6.3 2.5 3.8 0 3.8 17.7 13.9 

Moderate, severe, and extreme droughts, occurring several times over the years of record at various gauging 

stations, indicate that the El Litani River basin was highly affected by three extreme droughts, followed by the 

El Awali River basin at Saida with two extreme droughts. The analysis implies that El Damour, El Bared, and 

Abu Ali at Abu Samra and El Awali have had similar drought occurrence seasons at least in the past ten years. 

The drought analysis shows that El Hassbani and the lower and central parts of El Litani recorded a constant 

drought for several years. 
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For consecutive years, the majority of the river basins were affected by severe to extreme drought. Besides 

these drought events, some periods were dominated by moderate drought conditions at most stations, and 

some other stations were affected by extreme drought in both the first and second SDI. 

The sum of drought events ranges from 8% for the second 6 months (El Litani at Qasmieh) to 20% for both 

the first and the second 6-months periods (Abu Ali at Kousba). Although 80% of the averages of all events 

were in the normal or near-normal range of wetness, 30% experienced a hydrological drought (Table 7). 

According to the SDI, 10 out of 14 monitoring stations were affected by a near-drought once every two years 

in the first season, and five out of 14 monitoring stations were affected by near-drought in the first and 

second seasons. Other than that, the median of the SDI did not exceed near-normal or mildly wet (Table 8). 

The median SDI of the first and second 6-months periods for each hydrological gauge station was calculated 

for different periods (Table 3). 

The median of the first and second 6-months of SDI for 14 hydrological gauging stations (Table 8) was mildly 

wet, ranging from –0.24 in the first 6-months period (Kousba) to +0.45 in the second 6-months period (El 

Hermel). The probability of mildly wet conditions in SDI is 50%, which means they occur one out of two 

years. 

Table 8. The median of the Streamflow Drought Index at the hydrological gauging stations studied (reference of date to 

Table 3). 

Hydrological gauge 
station 

Median of SDI 
Description Value 

Oct.-Mar. Apr.-Sept. 

Es Safa –0.19 0.02 

Mildly wet –0.99, 0.99 

Abu Samra –0.11 0.11 

El Hermel –0.09 0.45 

Bared S.M. 0.05 0.06 

Damour S.M. –0.04 0.11 

Hassbani –0.05 –0.08 

Jisr El Qadi 0.15 0.17 

Khardale –0.03 0.05 

Kousba –0.24 0.02 

Marj Bisri –0.03 –0.10 

Qaroun 0.02 –0.03 

Qasmieh –0.21 –0.09 

Saida –0.22 0.05 

Wazzani 0.01 –0.12 
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5.2. Extreme hydrologic drought events 

The SDI values of the hydrological drought events indicate that some stations encounter extreme drought 

conditions. Extreme drought events occurred in the second 6-months period at El Damour Sea Mouth 

(2013/14), Khardale (1985/86, 1989/90, and 1998/99), Kousba, and Marj Bisri (2013/14), Qaroun (1989/90, 

2007/08), and Saida (2013/14). Accordingly, the effect of extreme drought in rainfall appears as a severe 

hydrological drought for the same timescale in the following year (1989/90). Commonly, the most extreme 

streamflow drought year for all gauging stations in the basins of the study area was obtained in hydrological 

years 2013/14 (Abu Samra, El Hermel, El Bared Sea Mouth, Ed Damour Sea Mouth, Es Safa, Kousba, Marj 

Bisri), 1985/86, 1989/90 and 1998/99 (Khardale ), 1989/90, 2000/01 and 2007/08 (Qaroun) and in 2017/18 

(Saida). 

Extreme drought in the study basins recurred a maximum of 3 times over 49 years (Qaroun) and over 79 years 

(El Khardale), which means the severity of events is 1/16 years at Qaroun and 1/26 years in Khardale. 

5.3. Spatial distribution of hydrologic and rainfall drought 

The spatial distribution maps obtained using the IDW method are shown in Figures 6 and 7. The figures 

indicate the occurrence of drought events based on the values of SPI and SDI by considering classes from 

normal to extreme drought. Figure 6 shows the occurrence rates of moderate, severe, and extreme drought in 

the entire climatic zones, in the range for the first 6-months period were 7.5-11%, 2.5-5%, and 2.9-4.2%, 

respectively. The SPI for the second 6-months period ranged from 5-6.7%, 3.3-4.6%, and 3.3-4.2% for 

moderate, severe, and extreme drought, respectively. The greatest rainfall drought level, 3.8-4.2%, was 

observed in the northern climatic zone, which affects the basin of El Bared and Abu Ali, based on SPI for the 

first 6-months period, and 4-4.2 in the climatic zone of the Beqaa, which affects the basin of El Assi, based 

on SPI for the second 6-months period. 

Considering the entire basins at all timescales, the lowest drought occurrence was 17.5% (North) for SPI in 

the first 6-months period and 20% (Abu Ali) for SDI, also in the first 6 months. Percentage drought 

occurrence with varying intensities is shown in Figures 6 and 7 for SPI and SDI for the first and second 6-

months periods. Extreme drought events, per SPI, were observed in the zone of the basins of El Bared, Abu 

Ali, and El Assi. Per SDI, extreme drought was encountered in the northwest of El Damour basin, West of El 

Awali, north of El Assi, and middle of El Litani. 

The spatial distributions of the most drought events occurring for various periods are shown in Figure 7 for 

SDI. The figure shows that the highest severe and extreme drought events (first 6-months period) are 

observed at Ed Damour stations Sea Mouth and Marj Bisri, as well as in El Bared at Sea Mouth, Abu Ali at 

Abu Samra, and in El Assi at El Hermel. 
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Fig. 6. SPI for 6-months periods in climatic zones which affect the basin in Lebanon (1901-2020). 

 

Fig. 7. SDI for 6-months periods at the selected streamflow sites in Lebanon (dates according to Table 3). 
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Based on SDI, drought intensities of moderate, severe, and extreme in most of the basins are respectively in 

the range of 0.01-19%, 0.003-11%, and from 0-4.8% (first 6-months period) and 0-16%, 0-14%, and 0-6.1% 

for the second 6-months period. Severe drought events were observed in the climatic zones of Beqaa, Mt 

Lebanon, South, and Nabatieh, as in the basins of El Bared, most of the Abu Ali, and the middle and mouth 

of Ed Damour basin.  

Extreme droughts based on SPI ranged between 2.9-4.2% and 3.3-4.2% (first and second 6-months periods), 

and, based on SDI, were between 0-4.8 and 0.002-6.1 for the study basins. For combined 6-months periods, 

severe droughts were 2.5-5% per SPI, and for most of the study basins per SDI, they were in the range  

of 0-14%. 

5.4. Correlation between SDI and SPI indices 

The investigation has been analyzed by examining the strength of the relationships between SDI and SPI 

using bivariate correlation analysis (Table 9). The correlation coefficients (Pearson’s r) based on the values of 

SPI and SDI for the various timescales10 are provided in Figure 8. 

Given that the critical thresholds for a strong correlation are –0.50 or +0.50, there is a strong positive 

relationship between SPI and SDI for the first 6-months period (Oct.-Mar.) for 12 stations, ranging from 0.86 

(El Hassbani after spring) to 0.57 (Ed Damour at Sea Mouth). are weak positive relationships for two 

stations: 0.45 (El Assi at El Hermel) and 0.33 (El Hassbani at El-Wazzani). The correlation between SPI and 

SDI in the second 6-months period (Apr.-Sept.) is very weak, with values ranging from a minimum of –0.01 

to –0.15 to a maximum of 0.02 to 0.40 for 12 stations. Correlations are modest (0.40) for the two remaining 

stations (El-Safa and El-Qaraoun).  

The significance of r from a set of data points that appear to have a linear relationship is presented in Table 9. 

Correlations between SDI and SPI were not significant (p > 0.05), except for El Safa, which is statistically 

significant (p = 3.79). 

 
10For comparison, the same years were adopted for the rain and water data (Table 3).  
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Fig. 8. Correlation SDI-SPI for the first and second 6-months periods in basins of Lebanon (reference of date to Table 3). 

Table 9. SDI and SPI correlation in selected basins in various climate zones of Lebanon (reference of date to Table 3). 

Climatic 
zones 

Basin Station 
Number 
of years 

First 6-months 
(Oct.-Mar.) 

Second 6-months 
(Apr.-Sept.) t critical 

r t observed r t observed 

North 

El Bared Sea Mouth 33 0.64 0.71 0.16 0.14 2.042 

Abu Ali 
Kousba 25 0.59 1.12 –0.10 0.93 2.069 

Abu Samra 31 0.75 1.08 0.24 0.68 2.045 

Mt 
Lebanon 

Ed Damour 

Es Safa 27 0.65 1.08 0.41 3.79 2.08 

Jisr El Qadi 21 0.66 0.92 0.12 0.66 2.093 

Sea Mouth 27 0.57 1.30 0.30 0.72 2.06 

El Awali 
Marj Bisri 19 0.78 0.76 0.08 0.61 2.11 

Saida 29 0.58 1.19 0.02 0.55 2.052 

Beqaa El Assi El Hermel 23 0.45 1.16 0.10 0.87 2.08 

Beqaa, 
Nabatieh 

El Hassbani 
El Wazzani 14 0.33 1.48 –0.02 0.75 2.179 

Aft. Spring 16 0.86 1.25 –0.15 0.83 2.145 

Beqaa, 
Nabatieh, 

El Litani 

Qaroun 45 0.62 1.81 0.40 0.65 2.021 

Khardale 79 0.66 0.85 0.33 0.60 1.994 

Qasmieh 25 0.82 1.54 –0.01 0.74 2.069 

6. Discussion and conclusion 

To answer the research question that deals with the characteristics of hydrologic and rainfall drought and 

their spatial and temporal distribution in the basins of different climatic zones in Lebanon, the results show 

an unevenly, mildly wet to mild drought conditions, with a 14.5% decline in rainfall from 1901 to 2020. The 

results for rainfall drought are similar to those from previous studies, which range from 12 to 16% (Shaban 

2015). The decrease is larger in the case of rivers, where the hydrologic drought ranges from 21.3% (El Bared 

at the Sea Mouth (1966-2020) to 58.5% (El Litani at Khardale, 1939-2018), which differs from Shaaban 

(2018), who reported a difference between 23 and 29%. 

48



The temporal variation for the first and the second 6-months periods in median values of SPI, represents 

mildly wet events in climatic zones in Lebanon occur with a probability of one out of two years. 

The study indicates that the greatest drought for the first season was recorded in the northern climatic zone, 

and in the northeastern Bekaa climatic zone for the second season. The climatic zones most vulnerable to 

rain drought are Bekaa and the north.  

While severe drought is frequent in most zones, this result can be compared with Faour’s (2015) studies, 

which specify moderate to extreme drought in the Bekaa Valley, and a moderate to severe drought in the 

Amioun area (located in the northern climatic zone).  

The temporal variation in median SDI based on the first and second 6-months periods oscillates between 

mild drought (-) and wet (+) events in basins studied in Lebanon. 

Measurement stations have generally been affected by moderate, and, in recent years, occasionally severe and 

extreme droughts. It must be said that each basin constitutes a case of moderate drought due to the 

difference in the measurement period and the lack of data for several years. Unfortunately, it is not possible 

to compare the results of the hydrological drought index for the study basins of Lebanon with previous ones, 

where similar studies are not available in the literature. 

The spatial and temporal maps displaying the distribution of 14 water metering stations contributed to this 

study to understand the ratio and locations vulnerable to hydrologic and rainfall drought. The climatic zones 

with severe drought, for the first 6-months periods, are in the north, and for the second 6-months periods are 

in the northern Bekaa. The basins with severe drought, for the first 6-months periods, are in El Damour and 

El Awali, and for the second 6-months periods are in northern and central Bekaa. 

The relationship between SPI and SDI fined in the first and second 6-months periods is weak, so it is not 

statistically significant. Since the values of SPI and SDI are not matched, one might assume the correlation 

between SPI and SDI values is weak. Calculating the correlation coefficient for these variables based on 

hydrologic and rainfall data reveals an inconsistent correlation over different periods. 

These insignificant relationships reinforce the result of this study that the decline in discharge at the studied 

measurement stations is not only associated with the decrease in precipitation but may be related to other 

factors, including human intervention. 

In all cases, the status is quite alarming and demands immediate water management plans to conserve water 

resources in the study basins, which are heavily populated and cover large investment areas. It is important to 

conduct additional investigations into hydrological drought and to develop drought early warning systems. 

Therefore, this study gives important information to decision-makers, about hydrologic and rainfall drought 
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conditions for five climatic zones and seven river basins representing most flow directions to mitigate these 

effects. 
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Abstract 

This work evaluates the efficiency of Random Forest (RF) regression for predicting water quality indicators and investigates factors 

affecting water quality in 11 watersheds in Virginia, District of Columbia, and Maryland. Ten years of daily water quality data along 

with hydro-meteorological information (such as precipitation) and watershed physiology and characteristics (e.g., size, soil type, land 

use) are used to predict dissolved oxygen (DO), specific conductivity (K), and turbidity (Tu) across the selected watersheds. The RF 

regression model is developed for six scenarios, with an increasing number of predictors introduced in each scenario. The first sce-

nario contains the smallest amount of information (water quality indicators DO, K and Tu), while scenario 6 contains all the available 

variables. The RF model is evaluated based on three statistical metrics: the relative root mean square error, the correlation coefficient, 

and the percentage of variance explained. In addition, the degree of importance for each predictor is used to rank their importance 

within each scenario. The model shows excellent performance for DO as the predicted variable. The model predicting K slightly out-

performs the one predicting Tu. Scenario 4 (built based on water quality indicators, hydro-meteorological data, watershed physiology 

and land cover information) provided the best tradeoff between performance and efficiency (quantified in terms of the amount of 

information needed to develop the model). In conclusion, based on the RF model, land cover plays a significant role in predicting wa-

ter quality indicators. In addition, the developed RF regression model is adaptable to watersheds in this region over a range of climates. 
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1. Introduction 

Monitoring surface water quality provides important information that can be used for actions to sustain eco-

logical systems, as well as to protect human health and livelihoods. Assessing temporal and spatial changes in 

water quality is fundamental for controlling and preventing water pollution. Several approaches have been in-

vestigated over the years to analyze such changes. Traditional methods based on statistical and numerical 

models are structurally complex, costly, time consuming, and require substantial data and detailed information 

(Jadhav et al. 2015). In addition, traditional models are not capable of reflecting the sophisticated interaction 

between chemical, physical, and biological properties of water quality (Chen et al. 2018). Furthermore, tradi-

tional models often require data pre-processing and assumptions regarding statistical distribution of data, 

which is usually unknown (Najah et al. 2019). 
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Recent developments in computer science, especially in Artificial Intelligence (AI), overcome most limitations 

of traditional modeling and has shown potential for handling water quality data (Tiyasha, Yaseen 2020). Ma-

chine learning (ML) is a branch of AI that enables computers to learn without explicit programming (Mitchell 

2013). ML has been widely used in many fields, including medicine (Long et al. 1993), engineering (Hulten 

2018), finance (Mezrich 1994), ecology (Kijewski et al. 2019), as well as environmental and water resources 

engineering (Chen et al. 2018; Norouzi, Moghaddam 2020). One of the powerful features of ML is its capabil-

ity to identify non-linear and complex relationships between input and output data (Najah et al. 2019). Several 

ML models have been applied to water quality studies over the past two decades, including neural networks 

(Yu et al. 2020), artificial neural networks (Jeong et al. 2001; Amiri, Nakane 2009; Imani et al. 2021), adaptive 

neuro-fuzzy inference systems (Najah et al. 2019), support vector regression models (Wang et al. 2017), and 

rough set theory (Zavareh, Maggioni 2018). Some ML algorithms, including factor analysis (Akoto, Abankwa 

2014), principal component analysis (PCA) and granger causality (Zavareh et al. 2021), have also been ex-

plored for data dimension reduction and to identify causal relationships. However, none of these techniques is 

perfect. For example, artificial neural networks require large amounts of data for training and often overfit 

data (Tiyasha, Yassen 2020). On the other hand, approaches like rough set and fuzzy set theories cannot han-

dle and/or process quantitative data (Dubois, Prade 1992). Data dimension reduction techniques, like PCA, 

can make it difficult to interpret principal components (Karamizadeh et al. 2013). 

Within ML forecasting models, RF is appealing because (Díaz-Uriarte, Alvarez de Andrés 2006; Boulesteix et 

al. 2012): (a) RF handles quantitative as well as qualitative data; (b) it does not overfit data; (c) its predictive 

performance is high compared to other modeling approaches; (d) it can directly process high dimensional data 

without dimensional reduction; (e) it does not need pre-processing; and (f) it can capture non-linear depend-

encies between predictor and predicted variables. 

RF has been employed in water resources science and engineering in recent years (Parkhurst et al. 2005; Chen 

et al. 2017; Tyralis et al. 2019; Li et al. 2020). For instance, RF models have proven successful in generating 

groundwater potential maps (Golkarian et al. 2018; Sameen et al. 2019), stream flow forecasting (Papa-

charalampous, Tyralis 2018), predicting groundwater level (Wang et al. 2018), analyzing effects of urbanization 

on hydrological variables (Saadi et al. 2019), urban water consumption forecasting (Chen et al. 2017), as well as 

for predicting water inrush rate in coal mines (Zhao et al. 2018) and soil infiltration rate (Singh et al. 2017). RF 

is particularly suitable when non-linear relationships exist, which is the case for the majority of processes in 

water science (Kijewski et al. 2019; Tyralis et al. 2019). 

RF has also become popular for predicting water quality indicators (Papacharalampous, Tyralis 2018). For in-

stance, Devi (2019) investigated the application of an RF classification model to water quality prediction in 

Kadapa district, India. The study examined water quality indicators, including pH, total dissolved solids, elec-
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trical conductivity, and chloride concentration to build a Water Quality Index (WQI) for drinking water as-

sessment, revealing that total dissolved solids was the most important variable affecting WQI, whereas pH 

was least important. The model classified drinking water in the region with 94% accuracy and a 6.3% error 

rate. Another study investigated the application of an RF classification model on water quality (Tesoriero et al. 

2017) to predict redox-sensitive contaminant concentration (nitrate, iron, and arsenic) in groundwater in 

northeastern Wisconsin. Their RF classification showed a high potential for assessing aquifer and stream vul-

nerability at regional and national scales. Furthermore, Wang et al. (2021) developed an RF regression model 

to predict water quality distribution in China’s Taihu Lake basin. Their model used watershed features and cli-

mate variables as predictor variables of three water quality parameters, permanganate index (CODMn), total 

phosphorus (TP), and total nitrogen (TN). The RF models showed that TN concentration was affected by 

agricultural non-point sources, while the CODMn and TP were impacted by agricultural and domestic 

sources. 

The present work builds upon these past studies and develops an RF regression model to assess water quality 

indicators in selected watersheds within Chesapeake Bay basin in the Eastern United States. Different scenar-

ios are proposed to evaluate the effect of different groups of predictors on model performance and to rank 

their importance in estimating several major water quality indicators: dissolved oxygen concentration, specific 

conductivity, and turbidity. Finally, an independent watershed is used to assess the transferability of the pro-

posed RF model to other watersheds having similar climate, size, and topography. 

2. Study area and dataset 

Eleven watersheds across the District of Columbia, Maryland, and Virginia (known as the DMV region) were 

selected for this study. The DMV region is particularly vulnerable to hydro-meteorological hazards, which are 

exacerbated by sea level rise because of its vicinity to the coast (Solakian et al. 2020). In addition, excessive 

algal growth, poor water clarity, and low dissolved oxygen related to eutrophication have been issues in the 

Chesapeake Bay area for the past few years (Zhang et al. 2018). Thus, researchers, local organizations, and 

governmental agencies have increased their efforts to collect and interpret water quality data to promote the 

health of the DMV watersheds that feed into the bay (Zhang et al. 2018). 

Data for this work are extracted from 11 United States Geological Survey (USGS) stations located at the out-

let of each watershed, as shown in Figure 1. These data contain water quality indicators, including dissolved 

oxygen (DO) in milligram per liter (mg l-1), specific conductivity (K) in microsiemens per centimeter at 25 de-

grees Celsius (µS cm-1 at 25°C), turbidity (Tu) in Formazin Nephelometric Units (FNU), and water tempera-

ture (WT) in degrees Celsius (°C). Additional information is also considered here, including precipitation, dis-

charge, air temperature, watershed size, and length of rivers running across watersheds, along with watershed 

land cover, soil type, and livestock count. These data are mainly extracted from USGS, National Aeronautics 
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and Space Administration (NASA), North America Land Data Assimilation System (NLDAS), and National 

Land Cover Database (NLCD). For more information regarding the data and the watersheds, we refer the 

reader to Zavareh et al. (2021). 

 
Fig. 1. Location of the 11 watersheds selected for this study across the DMV region. 

Table 1 displays watershed characteristics, including watershed physiology (size of watershed and total length 

of rivers in a watershed), land cover, soil type, and livestock head count for all watersheds in this study. Water-

sheds 1-10 are used for developing the RF model, whereas Scotts Level Branch (watershed 11) is used as an 

independent watershed for assessing model performance in the validation phase of this study. 
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Watershed size varies between 7 and 169 km2, while the total length of rivers ranges between 5 and 132 km. 

Land cover is summarized into five main groups, including wetland, developed, barren, forest, shrubland, and 

reported as percentages. Most watersheds are highly urbanized, with more than 50% of the total area being 

developed, except for watersheds 4 and 10. Watershed 4 is least developed, with only 8% of its total area clas-

sified as developed; watershed 6 is the most developed, with 87% of the total area classified as developed. 

Four watersheds (1, 4, 5, and 6) are mainly characterized by soil type B with moderate infiltration, whereas 

there is a prevalence of soil type C with slow infiltration in all other watersheds. Soil type is A least common 

in all watersheds. Land use and soil type affect infiltration rates, stream flow, and stormwater runoff (carrying 

contaminants), and can be particularly useful for interpreting relationships among water quality indicators and 

environmental characteristics (Zavareh et al. 2021). 

The minimum and maximum livestock head counts were 2 and 885, respectively. As shown in Table 1, even 

highly urbanized watersheds contain livestock (e.g., watershed 6 is the most urbanized watershed and has a 

headcount of 89 livestock). The livestock head count is included because the manure and waste from concen-

trated animal feeding operations have been a long-standing concern in contamination of water runoff as a po-

tential non-point source of water quality degradation (Burkholder et al. 2007; Dufour et al. 2012). 

Table 1. Characteristics of watersheds in this study. Watershed area and total length of rivers are in km and km2, respec-

tively, whereas land use and soil type are in percent. 

Watershed features 1 2 3 4 5 6 7 8 9 10 11 

Area 169 149 62.0 37.0 34.0 17.0 10.0 10.0 10.0 7.00 9.00 

Total length of rivers 103 132 56.0 30.2 23.9 9.30 9.20 10.0 8.70 5.00 8.20 

Wetland, open water 2.10 4.70 2.70 6.90 2.70 0.10 0.10 1.00 2.30 3.80 0.00 

Developed 69.2 53.5 74.2 7.90 61.1 87.8 85.4 86.0 70.6 44.0 82.3 

Barren 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 00.0 

Forest 20.9 38.9 22.8 77.6 29.1 11.7 14.3 11.6 27.1 51.0 13.8 

Shrubland, Herbaceous, 
Planted 

7.50 2.80 0.40 7.40 7.00 0.30 0.20 1.30 0.10 0.80 3.90 

Soil Type A 0.70 2.90 1.20 0.00 1.00 0.00 0.00 0.00 0.70 4.00 0.00 

Soil Type B 73.6 29.9 18.1 99.8 76.2 81.2 6.00 4.30 20.5 29.4 51.0 

Soil Type C 16.0 66.7 80.7 0.20 14.5 11.1 93.6 89.7 78.9 66.5 36.7 

Soil Type D 9.8 0.50 0.10 0.00 8.30 7.70 0.30 6.00 0.00 0.00 12.2 

Livestock count 885 152 46.0 65.0 185 89.0 2.00 8.00 5.00 5.00 75.0 

3. Methodology 

3.1. The Random Forest Model 

RF is an ensemble method, first developed by Breiman (2001), that uses multiple decision tree algorithms to 

produce repeated predictions of the same phenomenon. The ensemble combines predictions from multiple 
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learning models to obtain better accuracy than the individual models (Rokach 2010). One of the advantages of 

the RF method is that there is no need to pre-process or normalize data. 

RF can be used for classification purposes and as a regression method depending on the nature of the de-

pendent predicted variable (Tyralis et al. 2019). In regression models, the dependent variable is continuous 

(quantitative), whereas in classification algorithms it is categorical. RF models for regression are formed by 

growing trees depending on numerical values as opposed to class labels (Breiman 2001). In the present case, 

since the nature of predicted variables is continuous, we use an RF regression model. In this approach, RF 

grows a forest from many regression trees. A Regression Tree (RT) is a set of restrictions or conditions which 

are hierarchically structured, and which are successively applied from a root to a terminal node or leaf of the 

tree (Breiman et al. 1993; Zabihi et al. 2016). 

The first step in developing an RF model is bootstrapping, in which data is randomly sampled from the entire 

dataset with replacement (i.e., data can be picked more than once). Each RT is grown in a bootstrapped sub-

sample of a training dataset, which is known as bagging (Lagomarsino et al. 2017). The remaining data are 

called Out Of Bag (OOB), and they are used to estimate the prediction error and the importance of the varia-

bles (Han et al. 2016). Predictions based on the OOB set prevent overfitting (Lagomarsino et al. 2017). Over-

fitting may also result from extremely large trees, where lower branches introduce modeling noise. To avoid 

overfitting, the RT needs to be pruned. Pruning trees generates a simpler tree by deleting redundant variables. 

The second step is feature (variable) selection. In order to determine a split at each node in a decision tree, 

variables are randomly selected as features (Breiman 2001). Feature selection helps to build uncorrelated trees. 

Additional, feature selection introduces an extra layer of randomness to the model. The third step is to repeat 

steps 1 and 2 to build a forest with many trees, with each tree trained with different data. Consequently, two 

important parameters need to be selected in every RF model: the number of trees and the number of splits at 

each node. 

In this work, the RF model is developed based on data from 10 watersheds across the study area to estimate 

three water quality indicators: DO, K, and Tu. When one indicator is assigned to be the predicted variable, the 

other two are used as predictor variables. From the original data, 70% is dedicated to train the model, and the 

remaining 30% is used for testing (verification). The model is then validated using an independent watershed, 

i.e., Scotts Level Branch. 

The RF model built based on all information (water quality indicators in addition to information listed in Ta-

ble 1) is trained with different numbers of trees: 50, 100, 200, 300, 400, 500, and 600 (Fig. 2). The optimal 

number of trees is chosen based on the value minimizing the relative Root Mean Square Error (rRMSE), 

which is a measure of the relative misfit between modeled variables (DO, K, and Tu) and the corresponding 

observed values. This study uses 500 trees, the value at about which rRMSE reaches a plateau. This estimate is 
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consistent with the default values used in prior studies (Boulesteix et al. 2012; Devi 2019; Saadi et al. 2019; Al-

Abadi et al. 2021). 

 
Fig. 2. Values of rRMSE for modeled DO, K, and Tu with respect to their corresponding observed values as a function 

of the number of trees used in the RF regression model. 

Another parameter to calibrate when building an RF model is the number of variables at each split (mtry). For 

a regression RF model, mtry is suggested to be approximately one third of the number of variables in the da-

taset (Díaz-Uriarte, Alvarez de Andrés 2006; Boulesteix et al. 2012; Fox et al. 2020). This value was chosen for 

the present study. Here, mtry values are selected based on the number of variables in each of the six scenarios 

described in the Section 3.2. 

3.2. Model scenarios and performance evaluation 

The RF is developed for six scenarios, shown in Table 2. The number of variables increases moving from sce-

nario 1 to scenario 6. The first scenario contains only four water quality indicators, i.e., DO, K, Tu, and WT. 

In the second scenario, hydrologic characteristics of the watersheds, namely precipitation, discharge, and tem-

perature, are added to the variables considered in scenario 1. In the third scenario, watershed physiology (wa-

tershed area and the total length of rivers in each watershed) is included. Land cover information is included 

in scenario 4, soil type is added to scenario 5, and livestock head count in each watershed is incorporated in 

scenario 6. As mentioned previously, the number of mtry for each scenario is one third of the number of varia-

bles in each scenario: mtry is 2 for scenarios 1 and 2, 3 for scenarios 3, 4 for scenario 4, and 6 for scenarios 5 

and 6. 
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Table 2. Scenarios and number of predictor variables. 

 
Scenario 

1 2 3 4 5 6 

Water quality (DO, K, Tu, WT) X X X X X X 

Hydrology 
(precipitation, discharge, temperature) 

 X X X X X 

Watershed physiology 
(watershed area and length of rivers) 

  X X X X 

Land cover information    X X X 

Soil type information     X X 

Livestock headcount      X 

Total number of variables 3 6 8 13 17 18 

Three statistical metrics are used to analyze model performance of each scenario: correlation coefficient (R ) , 

relative Root Mean Square Error (rRMSE) , and percentage variance explained (%Var). 

The correlation coefficient between observed and predicted values is: 

𝑅 =  
∑ (𝑉𝑖 − 𝑉)(𝑃𝑖 − 𝑃)𝑛

𝑖=1

√∑ (𝑉𝑖 − 𝑉)
2

∑ (𝑃𝑖 − 𝑃)
2

𝑛
𝑖=1

𝑛
𝑖=1

⁄    (1) 

where: Vi are the measured values of variables, Pi are the predicted variable values, n is the number of varia-

bles in testing data, and �̅� and �̅� are the means of measured data variables and model predicted data, respec-

tively (Wu et al. 2020). 

The RMSE indicates the overall misfit between the modeled and observed variables (Yu et al. 2020). This is a 

common metric to evaluate the performance of prediction results. A perfect prediction model would have 

zero RMSE. Since the errors are squared before they are averaged, it is very sensitive to large errors in the 

measured data (Wang et al. 2018). As a result, this study uses rRMSE to assess model misfit. Its calculation 

formula is: 

𝑟𝑅𝑀𝑆𝐸 =   
√

1

𝑛
∑ (𝑃𝑖

𝑛
𝑖=1 − 𝑉𝑖)2

�̅�
⁄

  (2) 

where: Vi are variables from measured testing data, Pi are predicted values of a variable, n is the number of 

variables in testing data, and �̅� and �̅� are the mean of variables in testing data and model predicted data, re-

spectively (Wu et al. 2020). 

The %Var is a measure to show how well out-of-bag predictions explain the predicted variance of the training 

set. The percent variation is the explained variation divided by total variation. In other words: 
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% 𝑉𝑎𝑟 =  
∑ (𝑜𝑖 −𝑛

i=1  �̅�) (𝑏𝑖 − �̅�)
∑ (𝑜𝑖 − �̅�𝑛

i=1 ) + (𝑏𝑖 − �̅�)
⁄         (3) 

where: 𝑜𝑖 is a variable from OOB data, 𝑏𝑖 is a variable from bootstrap data, and  �̅� and �̅� are the mean of 

OOB and bootstrap data. 

The importance measure is used to estimate how much the prediction error increases when OOB data for that 

variable are permuted, while all others are unchanged (Liaw, Wiener 2002). The importance measures are 

computed to rank all predictors: if the importance measure of a variable is lower relative to others, that varia-

ble contributes minimally to the prediction process and can be potentially excluded. The importance measure 

is computed as the Mean Decrease in Accuracy (MDA ) : 

𝑀𝐷𝐴 =  
1

𝑛𝑡𝑟𝑒𝑒
∑ (𝐸𝑃𝑡𝑗 − 𝐸𝑡𝑗 )

𝑛𝑡𝑟𝑒𝑒
𝑡=1         (4) 

where: ntree is the number of trees, 𝐸𝑃𝑡𝑗 is the OOB error on tree 𝑡 after permuting the values of 𝑋𝑗, and 

𝐸𝑡𝑗 is the OOB error on the tree 𝑡 before permuting the value of 𝑋𝑗 (Han et al. 2016). Permutation-based im-

portance is crucial since it avoids allocating high importance to features that may not be predictive for unseen 

data due to overfitting (Pedregosa et al. 2011). 

4. Results 

4.1. RF Model Evaluation 

The three-performance metrics (R, %Var, and rRMSE) are calculated for each scenario when either DO, K, 

or Tu, is the predicted variable (Fig. 3). The best performance in terms of all three statistics is observed when 

estimating DO, based on the other water quality indicators. Minimal changes are observed when more predic-

tors are included in the RF model, with slight improvement in %Var and rRMSE when moving from scenario 

1 to scenario 2, which added information about watershed hydrology. The effect of urbanization was also sig-

nificant when DO was granger caused by K and Tu, as shown by Zavareh et al. (2021). 

When predicating K and Tu, R values improve when moving to more complex scenarios. This is particularly 

evident when estimating Tu after hydrological information is added in scenario 2. This can be associated with 

K and Tu being strongly affected by precipitation and discharge. 

In terms of %Var, increases of 20% and 45% are shown for K and Tu, respectively, when information on wa-

tershed hydrology is included. In addition, increases of 12% and 10% for K and Tu are detected when water-

shed physiology is added to scenario 2. This suggests that hydrological information and watershed physiology 

highly improve prediction of data variance. However, adding watershed characteristics of land cover or soil 

type does not improve %Var.  
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A slight improvement in the rRMSE of DO is observed when hydrologic information is added to the model. 

When K (Tu) is the predicted variable, rRMSE decreases by more than 50% (140%) when watershed physiol-

ogy and land cover are added to the model. 

 
Fig. 3. Correlation coefficient (top), Explained Variance (middle), and rRMSE (bottom) of DO, K, and Tu with respect 

to their corresponding observed values for the model scenarios in Table 2. 

Based on these results, the model based on scenario 4, which considers water quality, hydrologic information, 

watershed size, length of rivers, and land cover, outperforms the other models when considering both the sta-

tistical metrics shown in Figure 2 and model efficiency, i.e., the amount of required information. Thus, adding 

information regarding soil type and livestock count does not improve R, %Var, and/or rRMSE enough to 

justify the collection of these data, which can be time consuming and expensive in an operational setting. As a 

result, scenario 4 is selected for further investigation and recommended as the best compromise between per-

formance and efficiency. 

4.2. Predictor importance 

The importance measures (MDA ) for each predicted variable are calculated for every scenario. Higher MDA 

values indicate when a predictor variable plays a more important role in estimating the predicted variable. In 
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other words, if the accuracy of the RF model decreases due to exclusion of a certain predictor, the predictor is 

critical in developing the RF model. 

Figure 4 shows the MDA values for scenario 4. When predicting DO, WT is the most important variable, fol-

lowed by discharge and developed area. It is well known that DO and WT are highly correlated (Galloway 

2002). A higher volume of water moves faster and increases the flow turbulence, which results in more oxy-

gen dissolving in the water (Kelly 1997). Also, urbanization results in less impervious surfaces, which increase 

runoff and can elevate the amount of organic matter in water. Consequently, urbanization alters DO concen-

tration due to organic matter decomposition (Smith et al. 1992). 

Precipitation is the most important variable for predicting K. This is expected as precipitation increases runoff 

that can carry saline-polluted water, resulting in higher K. In addition, it is important to note that discharge, 

WT, and T are also highly predictive of K. This is consistent with findings from Zavareh et al. (2021). The 

most important watershed characteristic for predicting K is the area of developed land (urbanization). Like 

precipitation, urbanization contributes to K, as it decreases the possibility of salinity absorption into the soil 

and increases salinity in surface water. 

Discharge is the most important predictor of Tu. Higher water volume increases the speed of its movement, 

stirring up the water and increasing turbidity (Dalwadi, Padole 2019). The levels of K and WT are the second 

and third most important variables predicting Tu. This is in line with past studies that have shown strong 

Granger causality relationships between WT (cause) and Tu (effect) (Zavareh et al. 2021). 

In summary, discharge plays a very important role when predicting DO, K, and Tu. Additionally, the volume 

of discharge is directly affected by land cover. If the land cover of a watershed changes, the overall water yield 

(runoff) of the watershed changes, which affects water quality (Kumar et al. 2018). This explains why scenario 

4 outperforms scenarios 1-3 (which lack information regarding land use, which may have a critical effect on 

water quality). 

 
Fig. 4. Mean decrease in accuracy for predictors of the RF regression model built for Scenario 4 for predicting a) DO, b) 

K, and c) Tu. 
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4.3. Model validation 

In order to assess the applicability of the RF model, we evaluate its performance across an independent water-

shed, Scotts Level Branch, for which four months of data are available (January 2020 to April 2020). Infor-

mation on DO was unavailable for this watershed. 

Figure 5 shows time series of predicted and corresponding measured values of K and Tu for Scotts Level 

Branch. Model estimates are presented for the 6 scenarios as an ensemble envelope bounded by the minimum 

and maximum values obtained across all 6 models. 

Observed K values fall within the model ensemble bounds, showing that the model encapsulates the actual 

values of K and well reproduces its variability over time. However, the model identifies a peak in late February 

that was not captured by in-situ measurements. This can be either due to an overestimation by the model dur-

ing a specific precipitation event, or it could be an event missed by the observations. Similarly, some peaks in 

modeled Tu are not present in the observed time series. Nevertheless, Tu variability during the period of in-

terest is well captured within the model envelope. 

 
Fig. 5. Time series of modeled and observed K and Tu for Scotts Level Branch. The ensemble of modeled values is 

shown as a shaded area enveloped between the minimum and maximum values obtained from the models built on the 6 

scenarios. 

Table 3 shows the results for the three statistical metrics used in this study to evaluate the RF model perfor-

mance for K and Tu in the validation watershed for the 6 scenarios. Correlation coefficients more than dou-

bled when adding hydrology information to scenario 1 for both K and Tu. The R value improves when more 

information is added to the model, and as in the training phase, it increases sharply when hydrology infor-

mation is included in the model (i.e., moving from scenario 1 to 2). The %Var values for K and Tu more than 

doubled and tripled when hydrology and watershed physiology information are added (i.e., scenario 1 vs. sce-

nario 3). Conversely, the results of rRMSE do not consistently increase or decrease as more information is 
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added to the model. However, scenario 4 shows relatively low rRMSE compared to other scenarios. In gen-

eral, when comparing the three statistical metrics, scenario 4 shows the best performance for predicting K and 

Tu. This is in line with the results for the RF model, as previously discussed. 

Table 3. Correlation coefficient (R ) , Explained Variance (%Var), and rRMSE for predicted and observed K and Tu val-

ues in the Scotts Level Branch watershed. 

Scenario 
K Tu 

R %Var rRMSE R %Var rRMSE 

1 0.17 0.27 0.51 0.18 0.12 0.53 

2 0.57 0.46 0.43 0.79 0.45 0.89 

3 0.58 0.64 0.80 0.9 0.56 0.48 

4 0.52 0.65 0.41 0.94 0.58 0.45 

5 0.54 0.65 0.37 0.89 0.51 0.60 

6 0.50 0.64 0.53 0.90 0.60 1.01 

Scatterplots of actual and predicted K and Tu for scenario 4 are presented in Figure 6. Although the disper-

sion around the 1:1 line is consistent, the modeled K values are overall well aligned to K observed in the wa-

tershed during the 4-month validation period, with a correlation coefficient of 0.52. In terms of Tu, the model 

well reproduces large Tu values (correlation coefficient of 0.94), but overestimates observed values of Tu be-

low 10 FNU. This can be potentially improved by considering a larger sample size and verifying the model for 

a longer time series and/or in a different watershed. 

 
Fig. 6. Scatterplots of observed and predicted K (left) and Tu (right) in the Scotts Level Branch watershed. 

5. Conclusions 

This study investigates the efficiency of RF regression for predicting water quality indicators (DO, K, and Tu) 

and provides insight into factors affecting stream water quality. The RF models are built based on information 
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from 10 watersheds in the DMV region, with one independent watershed used for assessing model applicabil-

ity. The RF model performance is analyzed based on three statistical metrics, R, %Var, and rRMSE. In addi-

tion, degree of importance is calculated for each scenario to rank relative contribution of predictors in estimat-

ing water quality. 

The RF models to predict DO show the highest performance (average R = 0.99, average %Var = 0.98, aver-

age rRMSE = 0.11) when modeling the 10 watersheds. The RF models predicting K (average R = 0.75, aver-

age %Var = 0.57, and average rRMSE = 0.82) slightly outperform the models that predict Tu (average R = 

0.69, average %Var = 0.50, and average rRMSE = 1.62). However, when comparing the scenario perfor-

mances for DO, K, and TU and taking into account the amount of information needed for developing each 

model, scenario 4 is the most efficient option. This highlights the importance of land cover information in 

predicting water quality. 

The most important measure for predicting DO is WT, which is expected due to their strong correlation (Gal-

loway 2002). The second and third most important measures of DO are discharge and urbanization. In com-

parison, precipitation and discharge are the most important measures for predicting K. Among all watershed 

characteristics, urbanization plays the most important role in predicting K, as it results in greater area of im-

pervious land, which increases runoff volume and the concentration of total dissolved solids (Kumar et al. 

2018). When predicting Tu, discharge is the most important measure, as more discharge yields more sus-

pended solids, which increases turbidity. The second most important measure is K, as increased dissolved sol-

ids concentration contributes to higher Tu.  

An independent watershed is used to assess the performance of the developed models and evaluate their ap-

plicability to a different region. Model performance is similar to that observed in the training phase, with sce-

nario 4 (which includes water quality data, hydrology information, watershed size, length of rivers in water-

sheds, and land cover information) outperforming other scenarios. However, longer time series and different 

watersheds should be considered to verify these results. 

In conclusion, along with watershed physiology and hydrological characteristics, urbanization plays an im-

portant role in predicting DO, K, and Tu. In general, land cover highly impacts the production and transpor-

tation of sediments and organic matter (Inserillo et al. 2017). This emphasizes the vulnerability of surface wa-

ter and streams to anthropogenic changes.  

It is important to mention that there are limitations in using RF models in water quality data analysis. For in-

stance, extrapolation beyond the training data requires implementing techniques or procedures to mitigate the 

risks associated with extrapolation, such as using appropriate model validation methods, considering uncer-
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tainty estimates, and potentially applying domain knowledge to make informed decision. Additionally, the se-

lection of relevant variables significantly impacts model performance. A comprehensive elucidation of fitting 

methodologies is imperative to avoid inaccuracy in drawing predictive conclusions. 

Future work should extend this study to other regions to verify the effects of climate on the relationships be-

tween hydrometeorology and water quality. Additionally, finer temporal resolutions can be considered to inves-

tigate rates of hydrological response, especially in watersheds of different sizes. Additional water quality indica-

tors like pH and nitrate concentration would help generalize the results of this work and make the proposed 

analyses more useful for water quality management. Finally, extreme weather events should be analyzed to un-

derstand how they impact model outcomes.  
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Abstract 

River discharge is affected by many factors, such as water level, rainfall, and precipitation. This study proposes a new hybrid 

framework named LAES (LASSO-ANN-EMD-SVM) to model the relationship of daily river discharge with meteorological varia-

bles. This hybrid framework is a composite of the least absolute shrinkage and selection operator (LASSO), an artificial neural 

network (ANN), and an error correction method. In the first stage, LASSO identifies meteorological variables that have a signifi-

cant influence on the generation of river discharge. Next, the ANN model is used to predict river discharge using meteorological 

variables selected by LASSO, and the error series is determined. The error series is decomposed into intrinsic mode functions and 

residuals using empirical mode decomposition (EMD). The EMD components are modeled using the support vector machine 

(SVM) model, and the error predictions are aggregated. In the last stage, the LASSO-ANN predictions and the predicted error 

series are aggregated as the final discharge prediction. The proposed hybrid framework is illustrated on the Kabul River of Paki-

stan. The performance of the proposed hybrid framework is compared with six models using various performance measures and 

the Diebold-Mariano test. These models include multiple linear regression (MLR), SVM, ANN, LASSO-MLR, LASSO-SVM, and 

LASSO-ANN models. The findings reveal that the proposed hybrid model outperforms all other models considered in the study. 

In the testing phase, the root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error 

(MAE) of the proposed LAES hybrid model are 337.143 m3/s, 32.354%, and 218.353 m3/s which are smaller than all other mod-

els compared in the study. Our proposed hybrid system is an efficient model for river discharge prediction that will be helpful in 

water management and protection against floods. Long-term prediction can help to identify the major effects of climate change 

and to make evidence-based environmental policies. 
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1. Introduction 

Water is necessary for the survival of all living organisms in the world. Water is life, and demand for it is 

increasing due to rapid increases in population, urbanization, and industrialization. Moreover, water is a 

primary need for domestic, industrial, and agricultural activities (Mehta et al. 2022). Thus, it is essential to 

carefully manage and plan water resources to reduce loss of life and property damage caused by drought, 

floods, or heat waves (Ali, Shahbaz 2020; Mangukiya et al. 2022). Climate changes influence the hydrologi-

cal cycle globally; the resulting variations in weather and climate have increased the risks of drought and 

floods because weather changes, variations in precipitation, peak flows, and extreme temperatures have 

impacts on river discharge (Mehmood et al. 2021). The amount of discharge generated from a catchment 

depends on various factors such as duration, meteorological variables, velocity, and water level (Gleason et 

70



al. 2014; Saidi et al. 2018; Malik et al. 2020). Therefore, it is necessary to model river discharge using infor-

mation on the weather at the relevant hydrological station (Dariane, Azimi 2018). 

In the past thirty years, stochastic, physical, black box (machine learning and statistical), and conceptual 

models have been widely applied in hydrological studies. Physical models have been used for hydrological 

modeling, but their successful application is bound to the complexity of governing equations and the diffi-

culty in measuring the parameters involved (Yousuf et al. 2017). Statistical models try to determine the re-

lationships within the actual data. Their application is limited when data have unique and complex charac-

teristics such as non-linearity, multicollinearity, volatility, irregularities, noise, outliers, and more. In the 

past two decades, machine learning models have gained importance in hydrology due to their flexibility in 

handling datasets with unique characteristics (Ravindran et al. 2021; Elbeltagi et al. 2022). Rasouli et al. 

(2012) applied a support vector machine (SVM), Bayesian neural network, and Gaussian process to predict 

non-linear river discharge in North America using climate and weather variables. Ali and Shahbaz (2020) 

applied an artificial neural network (ANN) to predict river discharge in the upper Jhelum River basin of 

Pakistan. 

Although data-driven (statistical and machine learning) models are applied to predict river discharge, there 

is no single model that can predict river discharge without bias or with utmost certainty (Mehmood et al. 

2021). Literature shows that researchers have developed hybrid models by combining two or more tech-

niques to improve the prediction ability of the models (Shabbir et al. 2024). Wang and Li (2018) intro-

duced a hybrid framework based on an error correction approach using the generalized autoregressive 

conditionally heteroscedastic (GARCH) model when inherent correction and heteroscedasticity of errors 

cannot be ignored. Zhang et al. (2018a) developed an error-correction-based hybrid framework using an 

autoregressive (AR) model to predict water levels with improved accuracy. Luo et al. (2019) suggested a 

hybrid framework based on a composition of factor analysis, decomposition of time series, data regres-

sion, and error suppression to predict river discharge. Yan et al. (2020) combined a generalized additive 

model (GAM) with principal component analysis (PCA) to model the relationship between water level and 

macroinvertebrate diversity index in the Baiyandian Lake of China. Mehr and Gandomi (2021) suggested a 

hybrid model by integrating a multi-stage genetic programming (MSGP) model with the least absolute 

shrinkage and selection operator (LASSO) for improved prediction of river flow. Emadi et al. (2022) mod-

eled river water using a hybrid evolutionary data-driven approach. 

River discharge estimation is challenging in hydrological studies because its generation depends on various 

factors such as rainfall patterns, spatial-temporal irregularities, climatic changes, and many more (Cheng et 

al. 2019; Hu et al. 2022). In literature, much discussion is on the time series prediction of river discharge 

(see Luo et al. 2019; Mehr, Gandomi 2021; Adnan et al. 2022). There is an essential need to develop new 

methods to evaluate the possible influence of different factors on the generation of river discharge. Keep-

ing in view this gap, this study aims to develop a new hybrid approach to examine the relationship be-

tween river discharge and meteorological variables. 
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A new hybrid framework named LAES (LASSO-ANN-EMD-SVM) is proposed in this study based on a 

combination of feature selection, an ANN model, and an error correction method. In the first stage, 

LASSO is used to identify meteorological variables that have significant relationships with river discharge. 

The variables identified by LASSO are then used as input variables to the ANN model to obtain the dis-

charge predictions, and then the error series is computed. Further, the empirical mode decomposition 

(EMD) technique is used to decompose error series into intrinsic mode functions and residuals. These 

components are modeled using the SVM model, and their predictions are aggregated. The final discharge 

prediction is obtained by adding the LASSO-ANN discharge predictions with EMD-SVM error predic-

tions. Application of the proposed LAES hybrid framework is demonstrated for the Kabul River of Paki-

stan, and its prediction performance is compared with different models. 

The proposed hybrid framework is novel as it efficiently predicts river discharge by considering the influence 

of meteorological variables that have a significant impact on river discharge using LASSO. In addition, the 

error correction approach in the proposed LAES hybrid model helps to enhance the prediction of discharge 

by capturing the randomness and volatility of the error series. It provides reliable estimates of river discharge 

and can be helpful in the management of water supply and flood control. 

2. Methods 

2.1. Multiple linear regression 

The multiple linear regression (MLR) model is a simple and widely used modeling technique. The MLR 

model is given as: 

𝑦𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + ⋯ + 𝛽𝑝𝑥𝑝𝑗 + 𝑢𝑗 ,       𝑗 = 1,2, . . . , 𝑛 (1) 

where 𝑦𝑗 is the dependent (output) variable, 𝛽𝑗 are the regression coefficients, 𝑥𝑗  are the independent (in-

put) variable, 𝑛 is the number of observations, 𝑝 is the number of independent variables, and 𝑢𝑗  is the re-

sidual term. 

2.2. Least absolute shrinkage and selection operator 

Tibshirani (1996) introduced the least absolute shrinkage and selection operator (LASSO) as a variable-

selection approach for regression models. The method minimizes the residual sum of squares subject to 

the absolute values of the regression coefficients. LASSO  performs variable selection and regularization 

simultaneously to enhance the interpretability and precision of statistical models (Tibshirani 1996). This 

study applies LASSO to determine important meteorological variables for predicting river discharge. 

Assuming a sample contains 𝑀 events where each event has 𝑝 number of independent variables and one 

dependent variable, let 𝐲𝐢 be the dependent (output) variable, and 𝐱𝐢 = (𝑥1, 𝑥2, … , 𝑥𝑝)
𝑇

 be the vector of 

𝑖𝑡ℎ independent (input) variables, then the objective function of LASSO is: 
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For all ∑ |𝛽𝑗| ≤ 𝜆,
𝑝
𝑗=1  find the 𝑚𝑖𝑛

𝛽

1

𝑀
∑ (𝒚𝒊 − 𝐱𝒊

𝑻𝛃)
2𝑀

𝑖=1  (2) 

where 𝜆 is a pre-determined parameter that determines the regularization degree and 𝛃 = (𝛽1, 𝛽2, … , 𝛽𝑝) 

is the vector of regression coefficients. Let 𝐗 be the matrix of independent variables, i.e. 𝐗𝐢𝐣 = (𝑥𝑖)𝑗, 

where 𝑖 = 1, 2, … , 𝑀, 𝑗 = 1, 2, … , 𝑝 and 𝑥𝑖
𝑇  is the 𝑖𝑡ℎ row of 𝐗. Then, the above formula in a compact 

form can be written as:  

For all ‖𝛃‖1 ≤ 𝜆, calculate 𝑚𝑖𝑛
𝛽

{
1

𝑀
‖𝒚 − 𝐗𝛃‖2

2} (3) 

where ‖𝛃‖𝑝 = (∑ |𝛽𝑖|𝑝
𝑀
𝑖=1 )

1/𝑝
 is the standard 𝐿𝑝 norm, 𝟏𝑴 is a column vector of 𝑀 dimensions with 

entries 1. In this study, LASSO is employed using the optimal glmnet library in R language and the opti-

mal value of the LASSO parameter using this library is obtained using a 5-fold cross-validation approach. 

2.3. Artificial neural network  

The artificial neural network (ANN) is a robust modeling tool in which information processing is a repre-

sentation of biological systems (Kachrimanis et al. 2003). The network is constructed from interconnected 

neurons, which can determine values from the inputs through network processing. The neuron receives 

input signals and provides the output signal that mainly depends on the neuron processing function. The 

ANN architecture consists of a series of interlinked neuron layers. Every layer is linked with another layer 

through neurons, which transfer information between these layers. Through this processing, the infor-

mation reaches the output (dependent variable) layer. The ANN mechanism follows four assumptions: 

a) Inputs are handled by neurons. 

b) Through the connection of neurons, the information of inputs is passed on to the adjacent layers. 

c) Each neuron has a weight, and the output from the neuron is the product of its input and its associated 

weight. 

d) The transmitted inputs are passed via the activation of neurons to obtain the output. 

Figure 1a shows the architecture of the ANN model, and Figure 1b presents the structure of a neuron where 

every input (independent variable) comes from other neurons and are multiplied by their weights (𝑤𝑗; 𝑗 =

1,2, … , 𝑛) respectively and then aggregated with the bias (𝐛) vector. This aggregated input (𝑠) is passed 

using the transfer or activation function (𝑓) to obtain the output (𝑎) of a specific neuron. Letting 𝐱 be the 

vector of independent (input) variables, the neural network maps into another output vector 𝐚 through: 

𝐚 = 𝑓(𝐱. 𝑤 + 𝐛) (4) 

The mean squared error (MSE) is computed and using the back-propagation process, the weights of the 

entire network are modified in the training process. The accuracy of the ANN depends on the quality and 

amount of data in training. 
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In this study, the ANN algorithm is trained by a back-propagation technique where the output and input 

variables are applied in the network. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization is em-

ployed in a three-hidden-layer network. In the input layer of the ANN algorithm, the activation function is 

applied with 1000 iterations in the hidden layers. In this study, the ANN algorithm is applied using the val-

idant library in the R programming language. 

 

Fig. 1. The mathematical model of ANN (a) and systematic representation of a neuron (b). 

2.4. Empirical mode decomposition 

Huang et al. (1998) introduced empirical mode decomposition (EMD) as an adaptive method for signal 

analysis. The EMD is designed to analyze non-linear series. The EMD approach assumes that a signal 

contains different intrinsic mode functions (𝐼𝑀𝐹𝑠) of oscillations. Every mode has the same number of 

extrema and zero-crossings. There is a single extremum between successive zero-crossings. In this way, 

the signal is decomposed into different 𝐼𝑀𝐹𝑠 and residuals. A component is an 𝐼𝑀𝐹 if it satisfies two 

conditions: (i) the number of extrema and the number of zero-crossings must be equal to one or differ at 

most by one, and (ii) at any point, the average of the envelope is zero (Huang et al. 1998). Any original sig-

nal 𝑦(𝑡) can be decomposed using the EMD algorithm as follows (Lei et al. 2003; Jungsheng et al. 2006): 

a) Find the local minima and maximum through the cubic spline line as the upper envelope and lower 

envelope, respectively.  
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b) Find the mean (𝑚1) of upper and lower envelopes. 

c) The difference between the 𝑦(𝑡) and the 1𝑠𝑡  component 𝑚1 is the first component denoted as ℎ1 i.e. 

ℎ1 = 𝑦(𝑡) − 𝑚1. If ℎ1 is an 𝐼𝑀𝐹, then it is said to be the first 𝐼𝑀𝐹 component of 𝑦(𝑡).  

d) If ℎ1 is not an 𝐼𝑀𝐹, then it is treated as an original signal, and the steps (a)-(c) are repeated, then 

ℎ1 − 𝑚11 = ℎ11.  

After repeating the sifting process 𝑘 times, ℎ1𝑘 becomes an 𝐼𝑀𝐹 , i.e. ℎ1(𝑘−1) − 𝑚1𝑘 = ℎ1𝑘 , then it is 

termed as:  

𝑐1 = ℎ1𝑘 (5) 

The first 𝐼𝑀𝐹 component from the data. 

e) Next, subtract 𝑐1 from 𝑦(𝑡) to obtain 𝑢1 = 𝑦(𝑡) − 𝑐1 where 𝑢1 denotes the treated data, and the 

process is repeated 𝑛 times to get 𝑛 𝐼𝑀𝐹𝑠 of 𝑦(𝑡). Then, 

𝑢1 − 𝑐2 = 𝑢2

⋮
𝑢𝑛−1 − 𝑐𝑛 = 𝑢𝑛

} (6) 

At the end of the process, we have 𝐼𝑀𝐹𝑠 (𝑐𝑗; 𝑗 = 1,2, … , 𝑛) and residual (𝑢𝑗). By summation of all the 

components, the original signal 𝑦(𝑡) can be obtained as: 

𝑦(𝑡) = ∑ 𝑐𝑗 + 𝑢𝑛 𝑛
𝑗=1  (7) 

The EMD method is implemented using the EMD library in R language in this study. 

2.5. Support vector machine 

Support vector machine (SVM) is a popular modeling technique for classification and regression prob-

lems. The SVM algorithm maps complex high-dimensional data into high-feature space (Vapnik 1995). 

We assume a training set with 𝑛 observations, {𝑥𝑑 , 𝑦𝑑}, 𝑑 = 1,2, … , 𝑛, 𝑥𝑑  𝜖 𝑅, 𝑦𝑑 𝜖 𝑅, where 𝑦𝑑 denotes 

the estimated value of the dependent (output) variable, 𝑥𝑑 is the corresponding lagged values of the de-

pendent variable, and 𝑛 is the sample size. Then, the SVM is developed as: 

𝑓(𝑥) = 𝛚𝐓φ(𝑥) + 𝑏 (8) 

where 𝑓(𝑥) is the estimated dependent variable, 𝑏 ∈ 𝑅 is the bias, and 𝛚 ∈ 𝑅 represents the vector of 

weights. The transfer function φ(𝑥) maps input data into high-dimensional space. The Eq. (8) is solved 

by risk minimization as follows: 
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Minimum: (
‖𝛚𝟐‖

2
+ 𝑐 ∑ (𝑛

𝑑=1 𝜉∗ + 𝜉))  subject to: {

𝑓(𝑥𝑑) − 𝑦𝑑 ≤ 𝜀 + 𝜉∗

𝑦𝑑 − 𝑓(𝑥𝑑) ≤ 𝜀 + 𝜉
𝜉, 𝜉∗ ≥ 0

         (9) 

where 𝑐 > 0 represents the penalty parameter, 𝜉 and 𝜉∗are slack variables that show the upper and lower 

constraint of 𝑓(𝑥), and 𝜀 denotes the insensitive loss function. Further, the Lagrangian function is used as 

the non-linear regression function, which replaces φ(𝑥) and 𝛚 in Eq. (8) as: 

𝑓(𝑥𝑑) = ∑ (𝛼𝑑 − 𝛼𝑑
∗ )𝑘(𝑥, 𝑥𝑑) + 𝑏𝑛

𝑑=1  (10) 

where 𝑘(𝑥, 𝑥𝑑) = ⟨φ(𝑥), φ(𝑥𝑑)⟩ is the kernel function. The 𝛼𝑑
∗  and 𝛼𝑑 represents the Lagrange coeffi-

cients. 

In this study, SVM is applied to capture the features of the error series using the radial basis function 

(RBF) kernel, i.e. 𝑘(𝑥, 𝑥𝑑) = 𝑒
||𝑥−𝑥𝑑||

2𝑔2  
 , where 𝑔 is the width of RBF (Baydaroğlu et al. 2018). The SVM 

algorithm is applied in this study using the R language e1071 library with unit cost and 𝑔 = 1/𝑚 where 𝑚 

is the number of input variables. 

3. Proposed hybrid framework 

In this paper, we propose a novel LASSO-ANN-EMD-SVM (LAES) hybrid framework to predict daily 

river discharge based on its relationship with the meteorological variables. The proposed LAES hybrid 

framework is displayed in Figure 2.  

The steps of the LAES framework are: 

a) LASSO is applied for the selection of meteorological variables that influence discharge (𝑦) of the 

river. 

b) Next, the ANN model is employed to model river discharge using meteorological variables as inde-

pendent variables and the predictions of river discharge (�̂�𝐿𝐴) are obtained. Further, the error (i.e. 

�̂� = 𝑦 − �̂�𝐿𝐴) is computed. 

c) Using EMD, the error is decomposed into sub-series, and then the SVM model is used to predict 

each sub-series. By aggregating them, the predicted error (�̂�𝐸𝑆) is obtained. 

d) The final river discharge prediction is obtained using the predicted error series to correct the pre-

dicted river discharge in stage II (i.e. �̂�𝐿𝐴𝐸𝑆 = �̂�𝐿𝐴 + �̂�𝐸𝑆). 

The proposed LAES hybrid method is a unique combination of the feature selection method with the 

ANN model and error correction approach. To the best of our knowledge, there is no hybrid model in the 

literature that integrates LASSO with an error correction approach for modeling non-linear and high-di-

mensional data sets. 
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Fig. 2. The proposed LAES hybrid framework. 

3.1. Limitations of LAES hybrid framework 

The efficiency of the LAES hybrid framework depends on the optimal choice of parameters of the 

LASSO approach. This framework works efficiently when the independent variables are selected using the 

optimal value of the LASSO parameter and the information loss by dropping variables is minimal. A high 

value of the LASSO parameter can contribute toward a loss of information, which may result in poor 

model fit. Secondly, the performance of the proposed hybrid method depends on the availability of data 

variables that may vary in different regions of the world due to differences in weather characteristics. The 

performance of the LAES hybrid model may vary with respect to changes in region (or location) of study 

and climatic conditions. 

4. Application 

Data and performance measures are described in this section. The codes of this study were written in R 

language version 4.1.0. The complete analysis is performed on a personal computer with an Intel Core i9-

9900 CPU (32GB RAM).  

4.1. Description of data 

The Khyber Pakhtunkhwa province is a mountainous region, including the Tirich Mir, Lalazar, Hindu 

Kush, and some other mountain ranges. The changing climate of this region affects air temperature, water 
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flows, precipitation, and groundwater resources for irrigation systems and domestic use. These conditions 

make the northern area of Pakistan prone to drought or flooding due to changing environment and 

weather conditions.  

The Kabul River begins at the Unai pass base from the Hindu Kush mountains in Afghanistan, flowing 

toward the east and spanning 700 km to drain into the Indus River of Pakistan (Mehmood et al. 2021). 

The Kabul River at Nowshera station is located at a latitude of 34°0'25''N and longitude of 71°58'50''E. 

The hydrometeorological regime is characterized by rain in the spring and snow in the winter. The melting 

of glaciers in summer is increasing each year due to high temperatures, leading to rising water levels in the 

river (Rasouli 2022). In addition, rainfall in the monsoon season also affects water levels in the river. The 

Kabul River is influenced by varying climatic conditions, which may lead to hydrometeorological hazards 

(i.e., heatwaves, floods or drought). 

Figure 3 shows the location of the Kabul River in Pakistan. Kabul River data was collected from the Sur-

face Water Hydrology Project (SWHP) Department of the Water and Power Development Authority of 

Pakistan (WAPDA) from 1st January 2005 to 31st December 2017. The data contain river discharge and 

meteorological variables. The meteorological variables include air temperature (minimum and maximum), 

pan water (minimum and maximum), relative humidity (8 AM and 5 PM), dew point (8 AM and 5 PM), 

evapotranspiration, and wind speed. Average temperature and precipitation have high variability across the 

basin. River flow has been high during the monsoon period in Pakistan, particularly in July and August. In 

the midst of 2005, 2010, and 2015, there was extensive flooding due to high temperatures and heavy rain-

fall in the region. The discharge had some missing values, which were replaced with the monthly average 

(mean) value. Outliers present in the data were also replaced by median of the respective month. The 

number of observations for each variable is 4748, approximately 365 daily values for 13 years. 

 
Fig. 3. Location of Kabul River in Pakistan.  
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Table 1 shows summary descriptions of all the variables of the Kabul River data. The air temperature (max-

imum), air temperature (minimum), pan water (maximum), pan water (minimum), dew point (8 AM and 5 

PM), relative humidity (8 AM and 5 PM) have negatively skewed distributions, while river discharge, wind 

speed, evapotranspiration, precipitation and rainfall have positively skewed distributions. The average dis-

charge in the Kabul River is 871.8 m3/s. Figure 4 shows the Kabul River discharge series. It shows that 

there are non-linear relationships between river discharge and all meteorological variables.  

Table 1. Descriptive summary of variables. 

Variables Units Variables Mean Minimum Maximum Standard Deviation Skewness 

River discharge m3/s 𝑦 871.8 68.7 4724.0 750.7 1.4 

Air Temperature Maximum oF 𝑥1 85.0 5.0 122.0 15.4 –0.3 

Air Temperature Minimum oF 𝑥2 64.0 5.0 110.0 13.9 –0.1 

Pan Water Maximum oF 𝑥3 79.9 8.0 112.0 14.3 –0.3 

Pan Water Minimum oF 𝑥4 72.8 16.0 106.0 13.1 –0.1 

Dew point 8 AM oF 𝑥5 61.2 –9.0 93.0 13.6 –0.1 

Dew point 5 PM oF 𝑥6 70.1 12.0 110.0 15.5 –0.1 

Relative Humidity 8 AM % 𝑥7 81.7 4.0 100.0 14.4 –1.7 

Relative Humidity 5 PM % 𝑥8 70.9 1.0 100.0 15.9 –0.9 

Wind Speed mph 𝑥9 30.6 0.0 170.0 24.3 1.3 

Evapotranspiration mm d-1 𝑥10 5.1 0.0 27.9 5.1 0.9 

Precipitation mm d-1 𝑥11 2.7 0.0 91.0 8.2 4.7 

Rainfall mm d-1 𝑥12 3.3 0.0 161.0 11.5 6.1 

The data variables were normalized using the following (Duan et al. 2021):  

𝑧𝑛𝑜𝑟𝑚𝑎𝑙 =
𝑧−𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥−𝑧𝑚𝑖𝑛
 (11) 

where 𝑧 is the original data variable, 𝑧𝑛𝑜𝑟𝑚𝑎𝑙  is the normalized data variable, 𝑧𝑚𝑖𝑛 is the minimum value, 

and 𝑧𝑚𝑎𝑥  is the maximum value of the original data variable. After normalization, the dataset is divided 

into two parts, where 80% of the data are used for training and the remaining 20% for testing (Kisi et al. 

2021; Shabbir et al. 2022). The performance of models is evaluated by 5-fold cross-validation using differ-

ent performance evaluation measures and the average results of these indicators for training and testing 

data. 

 

Fig. 4. Kabul River discharge series. 
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4.2. Performance evaluation measures 

The prediction performance of the proposed hybrid framework is evaluated on both training and testing 

datasets. A 5-fold cross-validation approach and different goodness-of-fit measures are selected to assess 

the performance of models. These measures include root mean square error (RMSE), mean absolute per-

centage error (MAPE), root-relative square error (RRSE), mean absolute error (MAE) and coefficient of 

determination (R2). These measures are given as follows (Zeinali et al. 2020; Shabbir et al. 2023): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑗 − �̂�𝑗)

2𝑛
𝑗=1  (12) 

 𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑗−�̂�𝑗

𝑦𝑗
|𝑛

𝑗=1  (13) 

𝑅𝑅𝑆𝐸 = √
∑ (𝑦𝑗−�̂�𝑗)

2𝑛
𝑗=1

∑ (�̂�𝑗−�̅̂�)
2𝑛

𝑗=1

 (14) 

  𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑗 − �̂�𝑗|𝑛

𝑗=1  (15) 

𝑅2 = 1 − (
∑ (𝑦𝑗−�̂�𝑗)

2𝑛
𝑗=1

∑ (𝑦𝑗−�̅�)
2𝑛

𝑗=1

) (16) 

where 𝑛 denotes the total number of observations, 𝑦𝑗 denotes the actual observation and �̂�𝑗 denotes the 

predicted values. The terms �̅� and �̅̂� denote the average of observed and predicted values, respectively. 

To compare the performance of the different models for river discharge prediction, the improvement per-

centages of RMSE, MAPE, RRSE, and MAE are also used and are given as: 

𝑃𝑅𝑀𝑆𝐸 =
(𝑅𝑀𝑆𝐸𝑖−𝑅𝑀𝑆𝐸𝑗)

𝑅𝑀𝑆𝐸𝑖
×  100 (17) 

𝑃𝑀𝐴𝑃𝐸 =
(𝑀𝐴𝑃𝐸𝑖−𝑀𝐴𝑃𝐸𝑗)

𝑀𝐴𝑃𝐸𝑖
×  100 (18) 

𝑃𝑅𝑅𝑆𝐸 =
(𝑅𝑅𝑆𝐸𝑖−𝑅𝑅𝑆𝐸𝑗)

𝑅𝑅𝑆𝐸𝑖
×  100 (19) 

𝑃𝑀𝐴𝐸 =
(𝑀𝐴𝐸𝑖−𝑀𝐴𝐸𝑗)

𝑀𝐴𝐸𝑖
×  100 (20) 

𝑃𝑅2 =
(𝑅𝑖

2−𝑅𝑗
2)

𝑅𝑖
2 ×  100 (21) 

where subscript 𝑖 denotes the competing model and subscript 𝑗 indicates the proposed LAES hybrid 

model. These quantities indicate the degree of improvement in the prediction performance of one model 

relative to another model (Duan et al. 2021). 
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The Diebold-Mariano (DM) test has been widely used in literature to compare the forecast accuracy of 

two models (Silva et al. 2021; Shabbir et al. 2022). The null and alternative hypotheses are: 

𝐻0: 𝐸[𝑑𝑡] ≥ 0 (22) 

𝐻1: 𝐸[𝑑𝑡] < 0 

where 𝑑𝑡 is the difference loss function, i.e., 𝑑𝑡 = 𝑒1𝑡 − 𝑒2𝑡 , 𝑒1𝑡  and 𝑒2𝑡 denotes the set of prediction 

errors of two competing models. The test statistic is 𝐷𝑀 =
𝑑

(
2𝜋�̂�𝑑(0)

𝑚⁄ )
1/2 , where 𝑚 is the length of pre-

diction errors, �̅� =
1

𝑚
∑ (𝑑𝑡)𝑚

𝑡=1  is the average loss differential between two predictions,  The DM statistic 

follows the standard normal distribution (i.e. 𝑁(0,1)) and 𝑓𝑑(0) is the spectral density. The 2𝜋𝑓𝑑(0) is 

the consistent estimator of the asymptotic variance. The null hypothesis (𝐻0) is rejected if 𝐷𝑀<−𝑍𝛼 , 

where 𝑍 is the standardized normal percentile with probability 𝛼.  

In this study, a one-sided DM test is used to compare the prediction accuracy of the LAES model with six 

models. This test uses subscript 1 for the proposed LAES model and subscript 2 for the competing mod-

els. This test is applied using the squared differences loss function to compare models at a 1% significance 

level. If 𝐷𝑀 < −2.326, we will reject the null hypothesis. The proposed LAES hybrid model is compared 

with MLR, SVM, ANN, LASSO-MLR, LASSO-SVM and LASSO-ANN models in this study. 

5. Results and discussion 

In the proposed hybrid framework, LASSO is employed to choose meteorological variables that have sig-

nificant roles in predicting Kabul River discharge. This step eliminates insignificant variables and con-

structs a better prediction model. Using LASSO, we retain only important input variables that influence 

the river discharge of the Kabul River. The results of the LASSO using 𝜆 = 0.010 are shown in Figure 5a. 

LASSO eliminates three meteorological variables, i.e., pan water (maximum), relative humidity (8 AM) and 

relative humidity (5 PM). The air temperature (minimum and maximum), dew point (8 AM), relative hu-

midity (5 PM), rainfall, precipitation, wind speed, and evapotranspiration are significant variables for pre-

diction of river discharge. These variables. {𝑥1, 𝑥2 , 𝑥4, 𝑥5, 𝑥8, 𝑥9, 𝑥10 , 𝑥11, 𝑥12} are used as inputs to 

LASSO-based models. Bui et al. (2019) stated that dew point is a component of the temperature variable. 

The precipitation and rainfall factors are dependent on the air temperature and are indirectly associated 

with the dew point.  

Figure 5b shows that dew point (8 AM) is the most significant variable for predicting river discharge.  

These variables selected by LASSO are used as inputs to the ANN model in the proposed hybrid frame-

work. The prediction results by LASSO-ANN in the first round of the training phase are demonstrated in 

Figure 6a. The results of the remaining rounds are given in supplementary materials. 
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Fig. 5. The variable screening (a) and variable importance (b) results from LASSO on Kabul River data. 

After ANN model training, the predictions and error series are obtained. Stationarity of the error series is 

checked using an augmented Duckey-Fuller (ADF) test. The Dickey-Fuller statistic is –3.3875, indicating 

that the error series in the first round is non-stationary at the 5% level of significance. The results of ADF 

tests of the remaining rounds are provided in the supplementary materials. Next, the EMD decomposes 

the error series into 𝐼𝑀𝐹𝑠 and residuals as shown in Figure 6b. Then, the SVM is applied to model each 

component of the decomposed error series. The sub-series predictions are obtained and aggregated as the 

final error prediction shown in Figure 6c. The final prediction of river discharge is computed by adding 

the predicted errors and predicted river discharge. Lastly, the actual predicted values of river discharge are 

obtained by anti-normalization using Eq. 11. Figure 7 shows the predicted discharge plot in the testing 

phase in the first round. It reveals that the proposed LAES hybrid models have the closest predictions to 

the observed river discharge. 
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Fig. 6. Prediction results of LASSO-ANN: (a) error decomposition using EMD; (b) modeling of decomposed com-

ponents (c) in the first round of training the phase for the Kabul River. 
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Fig. 7. Prediction plot of Kabul River discharge on test data of first round. 

5.1. Comparison of model accuracy 

The daily river discharge was estimated against various meteorological variables. Table 2 presents the 

training and testing phase results of daily river discharge prediction. In the training phase, the MLR model 

is the worst performer among all models (RMSE = 533.822 m3/s, MAE = 378.003 m3/s, RRSE = 0.711, 

MAPE = 66.786% and R2 = 49.4%). However, the SVM and ANN models performed relatively better 

than the MLR model. For example, in the training phase, the RMSE for MLR, SVM and ANN models is 

533.822 m3/s, 511.262 m3/s and 507.015 m3/s, respectively. Similar to this study, Zhang et al. (2018b) 

found that the MLR model is the worst performer for predicting river discharge in the East River basin of 

China. Some other studies found that the non-linear features of river discharge are captured well by SVM 

and ANN models (see Poul et al. 2019 and Meng et al. 2021). 

Comparing the performance of models based on meteorological variables selected by LASSO, we found 

that the performance of all models is improved in most of the instances. The performance of the LASSO-

MLR model is better than the MLR model in the testing phase (RMSE = 543.559 m3/s, MAE = 381.889 

m3/s, RRSE = 0.725, MAPE = 67.758% and R2 = 47.4%). However contrary results are obtained in the 

training phase, in which the LASSO-MLR model has a similar fit to the MLR model. The prediction abil-

ity of LASSO-ANN and LASSO-SVM is better than ANN and SVM models respectively. Mehr and Gan-

domi (2021) found that LASSO improved the predictive ability of a multi-stage genetic programming 

model by reducing the number of genes for predicting river discharge in the Sedre River of Turkey. In the 

training phase, the proposed LAES hybrid model has the best fit for river discharge data based on various 

performance criteria (RMSE = 302.952 m3/s, MAE = 201.022 m3/s, RRSE = 0.404, MAPE = 30.494% 

and R2 = 83.7%). 

Comparing the results in the testing phase, the MLR model has the poorest performance when all the me-

teorological variables were used as inputs (RMSE = 554.277 m3/s, MAE = 383.541 m3/s, RRSE = 0.739, 

MAPE = 68.134% and R2 = 45.3%). The use of LASSO for dimension reduction enhanced the perfor-

mance of MLR, SVM, and ANN models in the testing phase. Judging by RMSE, RRSE and R2, the 
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LASSO-ANN model is a better performer than the LASSO-SVM and LASSO-MLR models. However, 

comparing MAE and MAPE, the LASSO-SVM model performs better than the LASSO-MLR and 

LASSO-ANN hybrid models (MAE = 307.124 m3/s and MAPE = 39.394%). The proposed LAES model 

outperforms all competing models in the testing phase (i.e., RMSE = 337.143 m3/s, MAE = 218.353 m3/s, 

RRSE = 0.449, MAPE = 32.354% and R2 = 79.8%). Overall, the proposed LAES hybrid model has higher 

prediction accuracy than single and LASSO-based ANN, SVM, and MLR models. 

Figure 8a presents the goodness-of-fit measure values of all the models considered in the study in both 

training and testing data. It shows that the proposed LAES hybrid model has the highest accuracy among 

all models considered in the study. The Taylor diagram in Figure 8b shows that the proposed LAES 

model is the most efficient among all models considered in predicting daily river discharge based on its 

relationship with meteorological variables. 

Table 2. Performance analysis of the proposed model with different models. 

Models RMSE (m3/s) MAE (m3/s) RRSE MAPE (%) R2 

 
Training 

MLR 533.822 378.003 0.711 66.786 0.494 

SVM 511.262 309.783 0.681 39.372 0.536 

ANN 507.015 334.263 0.676 50.508 0.542 

LASSO-MLR 534.091 378.263 0.712 66.878 0.494 

LASSO-SVM 469.381 280.664 0.625 35.972 0.609 

LASSO-ANN 456.981 302.596 0.609 45.686 0.629 

LAES 302.952 201.022 0.404 30.494 0.837 

 
Testing 

MLR 554.277 383.541 0.739 68.134 0.453 

SVM 527.427 324.443 0.702 41.814 0.505 

ANN 524.117 342.108 0.699 51.618 0.511 

LASSO-MLR 543.559 381.889 0.725 67.758 0.474 

LASSO-SVM 499.947 307.124 0.666 39.394 0.556 

LASSO-ANN 497.256 324.178 0.664 48.056 0.559 

LAES 337.143 218.353 0.449 32.354 0.798 

Note: Bold values represent minimum values in each column 

The improvements of the proposed LAES hybrid model are shown in Table 3 in terms of PRMSE, PMAE, 

PRRSE, PMAPE and PR2 for both training and testing phases. The proposed LAES hybrid model has 43.3%, 

40.7% and 40.3% lower RMSE than the MLR, SVM, and ANN models, respectively, in the training phase. 

The findings indicate that the MLR model is least efficient for non-linear data, consistent with the findings 

of Zhang et al. (2018b). 
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Fig. 8. Prediction results of models in training and testing phase (a) and Taylor diagram (b) for the Kabul River. 

Comparing the LAES model to LASSO-based models, we found that their promoting improvements were 

lower compared to single MLR, SVM, and ANN models in the majority of the scenarios. During testing, 

the reduction in RMSE by LASSO-MLR and MLR models is 38% and 39.2%, respectively. Similarly, the 

improvements by the LAES model vs. the SVM model (36.1%) are higher than the LAES model vs. the 

SVM model (32.6%). The proposed LAES hybrid model has 68.2%, 43.6%, and 42.7% better prediction 

accuracy than the LASSO-MLR, LASSO-SVM, and LASSO-ANN models. Kang et al. (2023) also stated 

that LASSO helps enhance the predictive performance of monthly run-off, which is influenced by meteor-

ological events. 

Generally, the proposed LAES hybrid model has promising predictions compared to all six models. Dur-

ing the training phase, the MAE of LAES compared to MLR, SVM, ANN, LASSO-MLR, LASSO-SVM, 

and LASSO-ANN decreased by 46.8%, 35.1%, 39.9%, 46.9%, 28.4%, and 33.6% respectively. These re-

sults are in agreement with the findings of Duan et al. (2021). They reported that the decomposition-based 

error correction approach significantly improves the accuracy of models. 

86



Table 3. Improved percentage (%) of proposed model versus other models. 

Models 
Training Testing 

PRMSE PMAE PRRSE PMAPE PR
2 PRMSE PMAE PRRSE PMAPE PR

2 

LAES vs. MLR 43.3 46.8 43.3 54.3 –69.4 39.2 43.1 39.2 52.5 –76.1 

LAES vs. SVM 40.7 35.1 40.8 22.6 –56.2 36.1 32.7 36.0 22.6 –57.9 

LAES vs. ANN 40.3 39.9 40.3 39.6 –54.5 35.7 36.2 35.7 37.3 –56.1 

LAES vs. LASSO-MLR 43.3 46.9 43.3 54.4 –69.6 38.0 42.8 38.0 52.3 –68.2 

LAES vs. LASSO-SVM 35.5 28.4 35.5 15.2 –37.5 32.6 28.9 32.6 17.9 –43.6 

LAES vs. LASSO-ANN 33.7 33.6 33.7 33.3 –33.0 32.2 32.6 32.3 32.7 –42.7 

The DM test results on the testing data of Kabul River discharge are given in Table 4. The null hypothesis 

for all competing models is rejected at a 1% significance level. Thus, the prediction accuracy of the pro-

posed hybrid LAES model is higher than the six benchmark models. Therefore, the DM test confirms that 

the proposed LAES hybrid model has higher prediction accuracy than the competing models in predicting 

river discharge. 

Table 4. DM test of proposed hybrid model versus different models on the testing dataset. 

Model MLR SVM ANN LASSO-MLR LASSO-SVM LASSO-ANN 

DM-value –9.118*** –8.688*** –10.256*** –10.702*** –8.434*** –8.299*** 

*** significant at a 1% significance level 

6. Conclusion 

In this study, a new hybrid framework named LAES (LASSO-ANN-EMD-SVM) is introduced for model-

ing river discharge using information from several meteorological variables. The proposed hybrid model is 

a composite of a variable selection approach with an artificial neural network and error correction method. 

The application of the LAES hybrid framework is illustrated using the data from the Kabul River in Paki-

stan. The effectiveness and predictive ability of the proposed framework are compared with six models 

using different performance measures. The numerical findings reveal that the LAES hybrid model has bet-

ter prediction performance than the single and LASSO-based MLR, SVM, and ANN models. Judging by 

RRSE, the LAES hybrid model has 43.3%, 40.8%, 40.3%, 43.3%, 35.5%, and 33.7% lower prediction er-

rors than MLR, SVM, ANN, LASSO-MLR, LASSO-SVM and LASSO-ANN models respectively. The 

Diebold-Mariano test shows that the proposed LAES model has higher prediction accuracy than all com-

peting models in the study. The proposed LAES model can serve as a successful tool for river discharge 

prediction by considering the impact of meteorological variables. In this study, we have used the LAES 

hybrid model for regression modeling only, but it can be applied for time series prediction of hydrological 

variables (such as river inflow and monthly run-off). For future research, new hybrid models can be devel-

oped by considering (i) relevance vector machine (RVM) or deep learning models such as multilayer per-

ceptron (MLP) in modeling; and (iii) using decomposition techniques such as ensemble EMD, complete 

EEMD (CEEMD), and variational mode decomposition (VMD) methods in the error correction stage. 

The proposed LAES model can serve as a successful tool for river discharge prediction of catchment areas 

of different areas of the world for efficient planning of water resources.  
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Appendix 

ADF test results. 𝐻0 – the time series contains unit root and is non-stationary; 𝐻1 – the time series is stationary. 

Fold 2 3 4 5 

Duckey-Fuller Statistic –3.2011* –3.1671* –3.0869* –3.3423* 

p-value 0.08769 0.0935 0.1327 0.06334 

 

Fig. S1. Prediction results of LASSO-ANN (a) Error decomposition using EMD (b), modeling of decomposed com-

ponents (c) in the second fold of training phase of Kabul River. 
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Fig. S2. Prediction results of LASSO-ANN (a) Error decomposition using EMD (b), modeling of decomposed com-

ponents (c) in the third fold of training phase of Kabul River. 
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Fig. S3. Prediction results of LASSO-ANN (a) Error decomposition using EMD (b), modeling of decomposed com-

ponents (c) in the fourth fold of training phase of Kabul River. 
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Fig. S4. Prediction results of LASSO-ANN (a) Error decomposition using EMD (b), modeling of decomposed com-

ponents (c) in the fifth fold of training phase of Kabul River. 
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